Purpose: In this work we provide measurements of speed of sound (SoS) and acoustic impedance (Z) of some doped/non-doped rubber-based materials dedicated to the development of ultrasound phantoms. These data are expected to be useful for speeding-up the preparation of multi-organ phantoms which show similar echogenicity to real tissues. Methods: Different silicones (Ecoflex, Dragon-Skin Medium) and polyurethane rubbers with different liquid (glycerol, commercial detergent, N-propanol) and solid (aluminum oxide, graphene, steel, silicon powder) inclusions were prepared. SoS of materials under investigation was measured in an experimental setup and Z was obtained by multiplying the density and the SoS of each material. Finally, an anatomically realistic liver phantom has been fabricated selecting some of the tested materials. Results: SoS and Z evaluation for different rubber materials and formulations are reported. The presence of liquid additives appears to increase the SoS, while solid inclusions generally reduce the SoS. The ultrasound images of realized custom fabricated heterogeneous liver phantom and a real liver show remarkable similarities. Conclusions: The development of new materials’ formulations and the knowledge of acoustic properties, such as speed of sound and acoustic impedance, could improve and speed-up the development of phantoms for simulations of ultrasound medical procedures.

Speed of sound in rubber-based materials for ultrasonic phantoms

Carbone M.
Penultimo
;
Menciassi A.
Ultimo
2016-01-01

Abstract

Purpose: In this work we provide measurements of speed of sound (SoS) and acoustic impedance (Z) of some doped/non-doped rubber-based materials dedicated to the development of ultrasound phantoms. These data are expected to be useful for speeding-up the preparation of multi-organ phantoms which show similar echogenicity to real tissues. Methods: Different silicones (Ecoflex, Dragon-Skin Medium) and polyurethane rubbers with different liquid (glycerol, commercial detergent, N-propanol) and solid (aluminum oxide, graphene, steel, silicon powder) inclusions were prepared. SoS of materials under investigation was measured in an experimental setup and Z was obtained by multiplying the density and the SoS of each material. Finally, an anatomically realistic liver phantom has been fabricated selecting some of the tested materials. Results: SoS and Z evaluation for different rubber materials and formulations are reported. The presence of liquid additives appears to increase the SoS, while solid inclusions generally reduce the SoS. The ultrasound images of realized custom fabricated heterogeneous liver phantom and a real liver show remarkable similarities. Conclusions: The development of new materials’ formulations and the knowledge of acoustic properties, such as speed of sound and acoustic impedance, could improve and speed-up the development of phantoms for simulations of ultrasound medical procedures.
2016
Cafarelli, A.; Miloro, P.; Verbeni, A.; Carbone, M.; Menciassi, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1103244
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 32
social impact