We investigate the possibility that the low mass companion of the black hole in the source of GW190814 was a strange quark star. This possibility is viable within the so-called two-families scenario in which neutron stars and strange quark stars coexist. Strange quark stars can reach the mass range indicated by GW190814, M∼(2.5-2.67) M⊙ due to a large value of the adiabatic index, without the need for a velocity of sound close to the causal limit. Neutron stars (actually hyperonic stars in the two-families scenario) can instead fulfill the presently available astrophysical and nuclear physics constraints which require a softer equation of state. In this scheme it is possible to satisfy both the request of very large stellar masses and of small radii while using totally realistic and physically motivated equations of state. Moreover it is possible to get a radius for a 1.4 M⊙ star of the order or less than 11 km, which is impossible if only one family of compact stars exists.

Was GW190814 a Black Hole-Strange Quark Star System?

Bombaci I.;Logoteta D.;
2021-01-01

Abstract

We investigate the possibility that the low mass companion of the black hole in the source of GW190814 was a strange quark star. This possibility is viable within the so-called two-families scenario in which neutron stars and strange quark stars coexist. Strange quark stars can reach the mass range indicated by GW190814, M∼(2.5-2.67) M⊙ due to a large value of the adiabatic index, without the need for a velocity of sound close to the causal limit. Neutron stars (actually hyperonic stars in the two-families scenario) can instead fulfill the presently available astrophysical and nuclear physics constraints which require a softer equation of state. In this scheme it is possible to satisfy both the request of very large stellar masses and of small radii while using totally realistic and physically motivated equations of state. Moreover it is possible to get a radius for a 1.4 M⊙ star of the order or less than 11 km, which is impossible if only one family of compact stars exists.
2021
Bombaci, I.; Drago, A.; Logoteta, D.; Pagliara, G.; Vidana, I.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1105232
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 78
social impact