We study the formation of singularities for cylindrical symmetric solutions to the Gross–Pitaevskii equation describing a dipolar Bose–Einstein condensate. We prove that solutions arising from initial data with energy below the energy of the Ground State and that do not scatter collapse in finite time. The main tools to prove our result are the variational characterization of the Ground State energy, suitable localized virial identities for cylindrical symmetric functions, and general integral and pointwise estimates for operators involving powers of the Riesz transform.
Dynamical collapse of cylindrical symmetric dipolar Bose–Einstein condensates
Jacopo Bellazzini;Luigi Forcella
2021-01-01
Abstract
We study the formation of singularities for cylindrical symmetric solutions to the Gross–Pitaevskii equation describing a dipolar Bose–Einstein condensate. We prove that solutions arising from initial data with energy below the energy of the Ground State and that do not scatter collapse in finite time. The main tools to prove our result are the variational characterization of the Ground State energy, suitable localized virial identities for cylindrical symmetric functions, and general integral and pointwise estimates for operators involving powers of the Riesz transform.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Bellazzini, Forcella - Dynamical collapse for dipolar Bose-Einstein condensates, published version.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
553.41 kB
Formato
Adobe PDF
|
553.41 kB | Adobe PDF | Visualizza/Apri |
calcvarVQR.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
498.76 kB
Formato
Adobe PDF
|
498.76 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.