Introduction: Plasticity at corticostriatal synapses is a key substrate for a variety of brain functions – including motor control, learning and reward processing – and is often disrupted in disease conditions. Despite intense research pointing toward a dynamic interplay between glutamate, dopamine (DA), and serotonin (5-HT) neurotransmission, their precise circuit and synaptic mechanisms regulating their role in striatal plasticity are still unclear. Here, we analyze the role of serotonergic raphe-striatal innervation in the regulation of DA-dependent corticostriatal plasticity. Methods: Mice (males and females, 2–6 months of age) were housed in standard plexiglass cages at constant temperature (22 ± 1 °C) and maintained on a 12/12 h light/dark cycle with food and demineralized water ad libitum. In the present study, we used a knock-in mouse line in which the green fluorescent protein reporter gene (GFP) replaced the I Tph2 exon (Tph2GFP mice), allowing selective expression of GFP in the whole 5-HT system, highlighting both somata and neuritis of serotonergic neurons. Heterozygous, Tph2+/GFP, mice were intercrossed to obtain experimental cohorts, which included Wild-type (Tph2+/+), Heterozygous (Tph2+/GFP), and Mutant serotonin-depleted (Tph2GFP/GFP) animals. Results: Using male and female mice, carrying on different Tph2 gene dosages, we show that Tph2 gene modulation results in sex-specific corticostriatal abnormalities, encompassing the abnormal amplitude of spontaneous glutamatergic transmission and the loss of Long Term Potentiation (LTP) in Tph2GFP/GFP mice of both sexes, while this form of plasticity is normally expressed in control mice (Tph2+/+). Once LTP is induced, only the Tph2+/GFP female mice present a loss of synaptic depotentiation. Conclusion: We showed a relevant role of the interaction between dopaminergic and serotonergic systems in controlling striatal synaptic plasticity. Overall, our data unveil that 5-HT plays a primary role in regulating DA-dependent corticostriatal plasticity in a sex-related manner and propose altered 5-HT levels as a critical determinant of disease-associated plasticity defects.

Serotonin drives striatal synaptic plasticity in a sex-related manner

Barsotti N.;Pasqualetti M.
Penultimo
;
2021-01-01

Abstract

Introduction: Plasticity at corticostriatal synapses is a key substrate for a variety of brain functions – including motor control, learning and reward processing – and is often disrupted in disease conditions. Despite intense research pointing toward a dynamic interplay between glutamate, dopamine (DA), and serotonin (5-HT) neurotransmission, their precise circuit and synaptic mechanisms regulating their role in striatal plasticity are still unclear. Here, we analyze the role of serotonergic raphe-striatal innervation in the regulation of DA-dependent corticostriatal plasticity. Methods: Mice (males and females, 2–6 months of age) were housed in standard plexiglass cages at constant temperature (22 ± 1 °C) and maintained on a 12/12 h light/dark cycle with food and demineralized water ad libitum. In the present study, we used a knock-in mouse line in which the green fluorescent protein reporter gene (GFP) replaced the I Tph2 exon (Tph2GFP mice), allowing selective expression of GFP in the whole 5-HT system, highlighting both somata and neuritis of serotonergic neurons. Heterozygous, Tph2+/GFP, mice were intercrossed to obtain experimental cohorts, which included Wild-type (Tph2+/+), Heterozygous (Tph2+/GFP), and Mutant serotonin-depleted (Tph2GFP/GFP) animals. Results: Using male and female mice, carrying on different Tph2 gene dosages, we show that Tph2 gene modulation results in sex-specific corticostriatal abnormalities, encompassing the abnormal amplitude of spontaneous glutamatergic transmission and the loss of Long Term Potentiation (LTP) in Tph2GFP/GFP mice of both sexes, while this form of plasticity is normally expressed in control mice (Tph2+/+). Once LTP is induced, only the Tph2+/GFP female mice present a loss of synaptic depotentiation. Conclusion: We showed a relevant role of the interaction between dopaminergic and serotonergic systems in controlling striatal synaptic plasticity. Overall, our data unveil that 5-HT plays a primary role in regulating DA-dependent corticostriatal plasticity in a sex-related manner and propose altered 5-HT levels as a critical determinant of disease-associated plasticity defects.
2021
Campanelli, F.; Marino, G.; Barsotti, N.; Natale, G.; Calabrese, V.; Cardinale, A.; Ghiglieri, V.; Maddaloni, G.; Usiello, A.; Calabresi, P.; Pasqualetti, M.; Picconi, B.
File in questo prodotto:
File Dimensione Formato  
Campanelli_etal_NeurobiolDis_2021.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 3.15 MB
Formato Adobe PDF
3.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1106305
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact