Chitin nanofibrils (CNs) are an emerging bio-based nanomaterial. Due to nanometric size and high crystallinity, CNs lose the allergenic features of chitin and interestingly acquire antiinflammatory activity. Here we investigate the possible advantageous use of CNs in tympanic membrane (TM) scaffolds, as they are usually implanted inside highly inflamed tissue environment due to underlying infectious pathologies. In this study, the applications of CNs in TM scaffolds were twofold. A nanocomposite was used, consisting of poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer loaded with CN/polyethylene glycol (PEG) pre-composite at 50/50 (w/w %) weight ratio, and electrospun into fiber scaffolds, which were coated by CNs from crustacean or fungal sources via electrospray. The degradation behavior of the scaffolds was investigated during 4 months at 37◦C in an otitis-simulating fluid. In vitro tests were performed using cell types to mimic the eardrum, i.e., human mesenchymal stem cells (hMSCs) for connective, and human dermal keratinocytes (HaCaT cells) for epithelial tissues. HMSCs were able to colonize the scaffolds and produce collagen type I. The inflammatory response of HaCaT cells in contact with the CN-coated scaffolds was investigated, revealing a marked downregulation of the proinflammatory cytokines. CN-coated PEOT/PBT/(CN/PEG 50:50) scaffolds showed a significant indirect antimicrobial activity.
Chitin nanofibril application in tympanic membrane scaffolds to modulate inflammatory and immune response
Danti S.
Primo
;Azimi B.;Milazzo M.;Ricci C.;Lazzeri A.Penultimo
;Berrettini S.Ultimo
2021-01-01
Abstract
Chitin nanofibrils (CNs) are an emerging bio-based nanomaterial. Due to nanometric size and high crystallinity, CNs lose the allergenic features of chitin and interestingly acquire antiinflammatory activity. Here we investigate the possible advantageous use of CNs in tympanic membrane (TM) scaffolds, as they are usually implanted inside highly inflamed tissue environment due to underlying infectious pathologies. In this study, the applications of CNs in TM scaffolds were twofold. A nanocomposite was used, consisting of poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer loaded with CN/polyethylene glycol (PEG) pre-composite at 50/50 (w/w %) weight ratio, and electrospun into fiber scaffolds, which were coated by CNs from crustacean or fungal sources via electrospray. The degradation behavior of the scaffolds was investigated during 4 months at 37◦C in an otitis-simulating fluid. In vitro tests were performed using cell types to mimic the eardrum, i.e., human mesenchymal stem cells (hMSCs) for connective, and human dermal keratinocytes (HaCaT cells) for epithelial tissues. HMSCs were able to colonize the scaffolds and produce collagen type I. The inflammatory response of HaCaT cells in contact with the CN-coated scaffolds was investigated, revealing a marked downregulation of the proinflammatory cytokines. CN-coated PEOT/PBT/(CN/PEG 50:50) scaffolds showed a significant indirect antimicrobial activity.File | Dimensione | Formato | |
---|---|---|---|
Chitin nanofibril 2021.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
4 MB
Formato
Adobe PDF
|
4 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.