First order phase transitions can leave relic pockets of false vacua and their particles, that manifest as macroscopic Dark Matter. We compute one predictive model: a gauge theory with a dark quark relic heavier than the confinement scale. During the first order phase transition to confinement, dark quarks remain in the false vacuum and get compressed, forming Fermi balls that can undergo gravitational collapse to stable dark dwarfs (bound states analogous to white dwarfs) near the Chandrasekhar limit, or primordial black holes.
Dark Matter as dark dwarfs and other macroscopic objects: multiverse relics?
Gross C.;Landini G.;Strumia A.;Teresi D.
2021-01-01
Abstract
First order phase transitions can leave relic pockets of false vacua and their particles, that manifest as macroscopic Dark Matter. We compute one predictive model: a gauge theory with a dark quark relic heavier than the confinement scale. During the first order phase transition to confinement, dark quarks remain in the false vacuum and get compressed, forming Fermi balls that can undergo gravitational collapse to stable dark dwarfs (bound states analogous to white dwarfs) near the Chandrasekhar limit, or primordial black holes.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
197=DMcompressor.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
2.72 MB
Formato
Adobe PDF
|
2.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.