Brief stimuli presented near the onset of saccades are grossly mislocalized in space. In this study, we investigated whether the Bayesian hypothesis of optimal sensory fusion could account for the mislocalization. We required subjects to localize visual, auditory, and audiovisual stimuli at the time of saccades ( compared with an earlier presented target). During fixation, vision dominates and spatially "captures" the auditory stimulus (the ventriloquist effect). But for perisaccadic presentations, auditory localization becomes more important, so the mislocalized visual stimulus is seen closer to its veridical position. The precision of the bimodal localization ( as measured by localization thresholds or just-noticeable difference) was better than either the visual or acoustic stimulus presented in isolation. Both the perceived position of the bimodal stimuli and the improved precision were well predicted by assuming statistically optimal Bayesian-like combination of visual and auditory signals. Furthermore, the time course of localization was well predicted by the Bayesian approach. We present a detailed model that simulates the time-course data, assuming that perceived position is given by the sum of retinal position and a sluggish noisy eye-position signal, obtained by integrating optimally the output of two populations of neural activity: one centered at the current point of gaze, the other centered at the future point of gaze.

Fusion of visual and auditory stimuli during saccades: A Bayesian explanation for perisaccadic distortions

BINDA, PAOLA;MORRONE, MARIA CONCETTA
2007-01-01

Abstract

Brief stimuli presented near the onset of saccades are grossly mislocalized in space. In this study, we investigated whether the Bayesian hypothesis of optimal sensory fusion could account for the mislocalization. We required subjects to localize visual, auditory, and audiovisual stimuli at the time of saccades ( compared with an earlier presented target). During fixation, vision dominates and spatially "captures" the auditory stimulus (the ventriloquist effect). But for perisaccadic presentations, auditory localization becomes more important, so the mislocalized visual stimulus is seen closer to its veridical position. The precision of the bimodal localization ( as measured by localization thresholds or just-noticeable difference) was better than either the visual or acoustic stimulus presented in isolation. Both the perceived position of the bimodal stimuli and the improved precision were well predicted by assuming statistically optimal Bayesian-like combination of visual and auditory signals. Furthermore, the time course of localization was well predicted by the Bayesian approach. We present a detailed model that simulates the time-course data, assuming that perceived position is given by the sum of retinal position and a sluggish noisy eye-position signal, obtained by integrating optimally the output of two populations of neural activity: one centered at the current point of gaze, the other centered at the future point of gaze.
2007
Binda, Paola; Bruno, A; Burr, Dc; Morrone, MARIA CONCETTA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/111177
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 43
social impact