Microplastic pollution is increasingly recognized as a prominent threat to marine life. Understanding the role of bioturbators is crucial to determine to what extent marine sediments can act as a microplastic sink. The presence of microplastics has been documented in holothurians, but no study has investigated how the ingestion-egestion process influences their bioavailability. Using the Mediterranean deposit-feeder, Holothuria tubulosa, as a model system, we assessed if, upon ingestion, plastic particles are accumulated in pseudofeces and if the passage through the digestive tract reduces their size. To this end, the number, shape and colour of plastic particles was compared between pseudofeces and surrounding surficial sediments collected along the edges of a seagrass meadow. Pseudofeces were enriched in plastic fragments with respect to surficial sediments, suggesting a selective ingestion of fragments over fibres. By contrast, there was no difference in the size or colour of plastic particles between pseudofeces and sediments. In addition, by means of a laboratory experiment, we evaluated how microplastic resuspension rates from pseudofeces compares with those from surficial sediments. Under standard water movement conditions, the resuspension of labelled microplastics from pseudofeces was much greater than that from sediments (i.e., about 92% and 26% at the end of the experimental trial). Greater relative abundance of fine material (i.e., pelite) in pseudofeces than sediments could explain their physical instability and, hence, their lower microplastic retention. Our results suggest that pseudofeces of H. tubulosa not only represent a hotspot for plastic fragment concentration, but, due to their surficial deposition and rapid dissolution, they could also promote their transfer to the water column. Ingestion and egestion of microplastics by this sea cucumber, although not altering their size, may thus enhance their bioavailability.

The sea cucumber Holothuria tubulosa does not reduce the size of microplastics but enhances their resuspension in the water column

Bulleri F.
Primo
;
Ravaglioli C.
Secondo
;
2021-01-01

Abstract

Microplastic pollution is increasingly recognized as a prominent threat to marine life. Understanding the role of bioturbators is crucial to determine to what extent marine sediments can act as a microplastic sink. The presence of microplastics has been documented in holothurians, but no study has investigated how the ingestion-egestion process influences their bioavailability. Using the Mediterranean deposit-feeder, Holothuria tubulosa, as a model system, we assessed if, upon ingestion, plastic particles are accumulated in pseudofeces and if the passage through the digestive tract reduces their size. To this end, the number, shape and colour of plastic particles was compared between pseudofeces and surrounding surficial sediments collected along the edges of a seagrass meadow. Pseudofeces were enriched in plastic fragments with respect to surficial sediments, suggesting a selective ingestion of fragments over fibres. By contrast, there was no difference in the size or colour of plastic particles between pseudofeces and sediments. In addition, by means of a laboratory experiment, we evaluated how microplastic resuspension rates from pseudofeces compares with those from surficial sediments. Under standard water movement conditions, the resuspension of labelled microplastics from pseudofeces was much greater than that from sediments (i.e., about 92% and 26% at the end of the experimental trial). Greater relative abundance of fine material (i.e., pelite) in pseudofeces than sediments could explain their physical instability and, hence, their lower microplastic retention. Our results suggest that pseudofeces of H. tubulosa not only represent a hotspot for plastic fragment concentration, but, due to their surficial deposition and rapid dissolution, they could also promote their transfer to the water column. Ingestion and egestion of microplastics by this sea cucumber, although not altering their size, may thus enhance their bioavailability.
2021
Bulleri, F.; Ravaglioli, C.; Anselmi, S.; Renzi, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1112649
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 18
social impact