Let (M, g) be a compact Riemannian n-dimensional manifold with umbilic boundary It is well know that, under certain hypothesis, in the conformal class of g there are scalar-flat metrics that have the boundary of M as a constant mean curvature hypersurface. In this paper we prove that these metrics are a compact set in the case of low dimensional manifolds, that is n = 6, 7, 8, provided that the Weyl tensor is always not vanishing on the boundary.

A compactness result for scalar-flat metrics on low dimensional manifolds with umbilic boundary

Ghimenti, Marco G.
;
Micheletti, Anna Maria
2021-01-01

Abstract

Let (M, g) be a compact Riemannian n-dimensional manifold with umbilic boundary It is well know that, under certain hypothesis, in the conformal class of g there are scalar-flat metrics that have the boundary of M as a constant mean curvature hypersurface. In this paper we prove that these metrics are a compact set in the case of low dimensional manifolds, that is n = 6, 7, 8, provided that the Weyl tensor is always not vanishing on the boundary.
2021
Ghimenti, Marco G.; Micheletti, Anna Maria
File in questo prodotto:
File Dimensione Formato  
Ghimenti-Micheletti2021_Article_ACompactnessResultForScalar-fl.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 411.33 kB
Formato Adobe PDF
411.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
n=6-7-8.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 483.88 kB
Formato Adobe PDF
483.88 kB Adobe PDF Visualizza/Apri
CV21.pdf

accesso aperto

Descrizione: Offprint
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 572.69 kB
Formato Adobe PDF
572.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1112844
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact