Let (M, g) be a compact Riemannian n-dimensional manifold with umbilic boundary It is well know that, under certain hypothesis, in the conformal class of g there are scalar-flat metrics that have the boundary of M as a constant mean curvature hypersurface. In this paper we prove that these metrics are a compact set in the case of low dimensional manifolds, that is n = 6, 7, 8, provided that the Weyl tensor is always not vanishing on the boundary.
A compactness result for scalar-flat metrics on low dimensional manifolds with umbilic boundary
Ghimenti, Marco G.
;Micheletti, Anna Maria
2021-01-01
Abstract
Let (M, g) be a compact Riemannian n-dimensional manifold with umbilic boundary It is well know that, under certain hypothesis, in the conformal class of g there are scalar-flat metrics that have the boundary of M as a constant mean curvature hypersurface. In this paper we prove that these metrics are a compact set in the case of low dimensional manifolds, that is n = 6, 7, 8, provided that the Weyl tensor is always not vanishing on the boundary.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Ghimenti-Micheletti2021_Article_ACompactnessResultForScalar-fl.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
411.33 kB
Formato
Adobe PDF
|
411.33 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
n=6-7-8.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
483.88 kB
Formato
Adobe PDF
|
483.88 kB | Adobe PDF | Visualizza/Apri |
CV21.pdf
accesso aperto
Descrizione: Offprint
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
572.69 kB
Formato
Adobe PDF
|
572.69 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.