Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by a progressive-fibrosing phenotype. IPF has been associated with aberrant HDAC activities confirmed by our immunohistochemistry studies on HDAC6 overexpression in IPF lung tissues. We herein developed a series of novelhHDAC6 inhibitors, having low inhibitory potency overhHDAC1 andhHDAC8, as potential pharmacological tools for IPF treatment. Their inhibitory potency was combined with lowin vitroandin vivotoxicity. Structural analysis of 6h and structure-activity relationship studies contributed to the optimization of the binding mode of the new molecules. The best-performing analogues were tested for their efficacy in inhibiting fibrotic sphere formation and cell viability, proving their capability in reverting the IPF phenotype. The efficacy of analogue 6h was also determined in a validated human lung model of TGF-β1-dependent fibrogenesis. The results highlighted in this manuscript may pave the way for the identification of first-in-class molecules for the treatment of IPF.

Harnessing the Role of HDAC6 in Idiopathic Pulmonary Fibrosis: Design, Synthesis, Structural Analysis, and Biological Evaluation of Potent Inhibitors

Brogi S.;
2021-01-01

Abstract

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by a progressive-fibrosing phenotype. IPF has been associated with aberrant HDAC activities confirmed by our immunohistochemistry studies on HDAC6 overexpression in IPF lung tissues. We herein developed a series of novelhHDAC6 inhibitors, having low inhibitory potency overhHDAC1 andhHDAC8, as potential pharmacological tools for IPF treatment. Their inhibitory potency was combined with lowin vitroandin vivotoxicity. Structural analysis of 6h and structure-activity relationship studies contributed to the optimization of the binding mode of the new molecules. The best-performing analogues were tested for their efficacy in inhibiting fibrotic sphere formation and cell viability, proving their capability in reverting the IPF phenotype. The efficacy of analogue 6h was also determined in a validated human lung model of TGF-β1-dependent fibrogenesis. The results highlighted in this manuscript may pave the way for the identification of first-in-class molecules for the treatment of IPF.
2021
Campiani, G.; Cavella, C.; Osko, J. D.; Brindisi, M.; Relitti, N.; Brogi, S.; Saraswati, A. P.; Federico, S.; Chemi, G.; Maramai, S.; Carullo, G.; Jaeger, B.; Carleo, A.; Benedetti, R.; Sarno, F.; Lamponi, S.; Rottoli, P.; Bargagli, E.; Bertucci, C.; Tedesco, D.; Herp, D.; Senger, J.; Ruberti, G.; Saccoccia, F.; Saponara, S.; Gorelli, B.; Valoti, M.; Kennedy, B.; Sundaramurthi, H.; Butini, S.; Jung, M.; Roach, K. M.; Altucci, L.; Bradding, P.; Christianson, D. W.; Gemma, S.; Prasse, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1113298
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 26
social impact