Rat sarcoma (RAS) oncogenes have intensively been investigated during the last decades. Taking into account all human tumours, Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) gene is the most frequently mutated (about 22%) among the three isoforms, followed by Neuroblastoma RAS Viral Oncogene Homolog (NRAS) (8%) and Harvey Rat Sarcoma Viral Oncogene Homolog (HRAS) (3%). In the last years, careful attention has been paid on KRAS and NRAS gene mutations in non–small-cell lung cancer (NSCLC) and colorectal cancer (CRC) patients because of their prognostic and predictive roles. In particular, a large body of literature data has been generated investigating clinical outcomes of targeted treatments in NSCLC and CRC KRAS- and NRAS-mutated patients. The latest evidences are here reviewed, providing also an overview of the real-world RAS mutation testing practice across different Italian laboratories. On this basis, we propose a knowledge-based system, www.rasatlas.com, to support the healthcare personnel in the management of patients featuring RAS gene mutations in the landscape of precision oncology.

RAS as a positive predictive biomarker: focus on lung and colorectal cancer patients

Cremolini C.;Fontanini G.;Loupakis F.;
2021-01-01

Abstract

Rat sarcoma (RAS) oncogenes have intensively been investigated during the last decades. Taking into account all human tumours, Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) gene is the most frequently mutated (about 22%) among the three isoforms, followed by Neuroblastoma RAS Viral Oncogene Homolog (NRAS) (8%) and Harvey Rat Sarcoma Viral Oncogene Homolog (HRAS) (3%). In the last years, careful attention has been paid on KRAS and NRAS gene mutations in non–small-cell lung cancer (NSCLC) and colorectal cancer (CRC) patients because of their prognostic and predictive roles. In particular, a large body of literature data has been generated investigating clinical outcomes of targeted treatments in NSCLC and CRC KRAS- and NRAS-mutated patients. The latest evidences are here reviewed, providing also an overview of the real-world RAS mutation testing practice across different Italian laboratories. On this basis, we propose a knowledge-based system, www.rasatlas.com, to support the healthcare personnel in the management of patients featuring RAS gene mutations in the landscape of precision oncology.
2021
Malapelle, U.; Passiglia, F.; Cremolini, C.; Reale, M. L.; Pepe, F.; Pisapia, P.; Avallone, A.; Cortinovis, D.; De Stefano, A.; Fassan, M.; Fontanini, G.; Galetta, D.; Lauricella, C.; Listi, A.; Loupakis, F.; Pagni, F.; Pietrantonio, F.; Pilotto, S.; Righi, L.; Bianchi, A. S.; Parra, H. S.; Tiseo, M.; Verze, M.; Troncone, G.; Novello, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1113761
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact