Integrated circuits (ICs) may be exposed to counterfeiting due to the involvement of untrusted parties in the semiconductor supply chain; this threatens the security and reliability of electronic systems. This paper focusses on the most common type of counterfeiting namely, recycled and remarked ICs. The goal is to develop a technique to differentiate between new and recycled ICs that have been used for a short period of time. Detecting recycled ICs using aging sensors have been researched using sub-threshold leakage current and frequency degradation utilizing ring oscillators (ROs). The resolution of these sensors requires further development to accurately detect short usage time. This paper proposes a differential aging sensor to detect recycled ICs using ring oscillators with sub-threshold leakage current to detect aging effects using bias temperature instability (BTI) and hot carrier injection (HCI) on a 22-nm CMOS technology, provided by GlobalFoundries. Simulation results confirm that we are able to detect recycled ICs with high confidence using proposed technique. It is shown that the discharge time increases by 14.72% only after 15 days and by 60.49% after 3 years' usage, and outperforms techniques that use frequency degradation only, whilst considering process and temperature variation.

Differential Aging Sensor to Detect Recycled ICs using Sub-threshold Leakage Current

Rossi D.
Ultimo
2021-01-01

Abstract

Integrated circuits (ICs) may be exposed to counterfeiting due to the involvement of untrusted parties in the semiconductor supply chain; this threatens the security and reliability of electronic systems. This paper focusses on the most common type of counterfeiting namely, recycled and remarked ICs. The goal is to develop a technique to differentiate between new and recycled ICs that have been used for a short period of time. Detecting recycled ICs using aging sensors have been researched using sub-threshold leakage current and frequency degradation utilizing ring oscillators (ROs). The resolution of these sensors requires further development to accurately detect short usage time. This paper proposes a differential aging sensor to detect recycled ICs using ring oscillators with sub-threshold leakage current to detect aging effects using bias temperature instability (BTI) and hot carrier injection (HCI) on a 22-nm CMOS technology, provided by GlobalFoundries. Simulation results confirm that we are able to detect recycled ICs with high confidence using proposed technique. It is shown that the discharge time increases by 14.72% only after 15 days and by 60.49% after 3 years' usage, and outperforms techniques that use frequency degradation only, whilst considering process and temperature variation.
2021
978-3-9819263-5-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1114072
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact