The massive amount of data collected in the Internet of Things (IoT) asks for effective, intelligent analytics. A recent trend supporting the use of Artificial Intelligence (AI) solutions in IoT domains is to move the computation closer to the data, i.e., from cloud-based services to edge devices. Federated learning (FL) is the primary approach adopted in this scenario to train AI-based solutions. In this work, we investigate the introduction of quantization techniques in FL to improve the efficiency of data exchange between edge servers and a cloud node. We focus on learning recurrent neural network models fed by edge data producers using the most widely adopted neural networks for time-series prediction. Experiments on public datasets show that the proposed quantization techniques in FL reduces up to 19× the volume of data exchanged between each edge server and a cloud node, with a minimal impact of around 5% on the test loss of the final model.
Neural network quantization in federated learning at the edge
Tonellotto N.
;Nardini F. M.;
2021-01-01
Abstract
The massive amount of data collected in the Internet of Things (IoT) asks for effective, intelligent analytics. A recent trend supporting the use of Artificial Intelligence (AI) solutions in IoT domains is to move the computation closer to the data, i.e., from cloud-based services to edge devices. Federated learning (FL) is the primary approach adopted in this scenario to train AI-based solutions. In this work, we investigate the introduction of quantization techniques in FL to improve the efficiency of data exchange between edge servers and a cloud node. We focus on learning recurrent neural network models fed by edge data producers using the most widely adopted neural networks for time-series prediction. Experiments on public datasets show that the proposed quantization techniques in FL reduces up to 19× the volume of data exchanged between each edge server and a cloud node, with a minimal impact of around 5% on the test loss of the final model.| File | Dimensione | Formato | |
|---|---|---|---|
|
_IS__Federated_Learning_Quantization_in_MEC.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


