The massive amount of data collected in the Internet of Things (IoT) asks for effective, intelligent analytics. A recent trend supporting the use of Artificial Intelligence (AI) solutions in IoT domains is to move the computation closer to the data, i.e., from cloud-based services to edge devices. Federated learning (FL) is the primary approach adopted in this scenario to train AI-based solutions. In this work, we investigate the introduction of quantization techniques in FL to improve the efficiency of data exchange between edge servers and a cloud node. We focus on learning recurrent neural network models fed by edge data producers using the most widely adopted neural networks for time-series prediction. Experiments on public datasets show that the proposed quantization techniques in FL reduces up to 19× the volume of data exchanged between each edge server and a cloud node, with a minimal impact of around 5% on the test loss of the final model.

Neural network quantization in federated learning at the edge

Tonellotto N.
;
Nardini F. M.;
2021-01-01

Abstract

The massive amount of data collected in the Internet of Things (IoT) asks for effective, intelligent analytics. A recent trend supporting the use of Artificial Intelligence (AI) solutions in IoT domains is to move the computation closer to the data, i.e., from cloud-based services to edge devices. Federated learning (FL) is the primary approach adopted in this scenario to train AI-based solutions. In this work, we investigate the introduction of quantization techniques in FL to improve the efficiency of data exchange between edge servers and a cloud node. We focus on learning recurrent neural network models fed by edge data producers using the most widely adopted neural networks for time-series prediction. Experiments on public datasets show that the proposed quantization techniques in FL reduces up to 19× the volume of data exchanged between each edge server and a cloud node, with a minimal impact of around 5% on the test loss of the final model.
2021
Tonellotto, N.; Gotta, A.; Nardini, F. M.; Gadler, D.; Silvestri, F.
File in questo prodotto:
File Dimensione Formato  
_IS__Federated_Learning_Quantization_in_MEC.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1114316
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 44
social impact