Differing from the extant physeteroids, macroraptorial sperm whales are currently regarded as apex predators of the Miocene seas based on several morphofunctional observations. Here, we estimate the bite force of Zygophyseter varolai, a macroraptorial physeteroid from lower upper Miocene strata of the Pietra leccese formation (Apulia, Italy) using the finite element analysis (FEA). To explore multiple bite scenarios, we set four different load cases on a 3D model of the cranium obtained via digital photogrammetry, considering the temporalis and masseter muscles as jaw adductors. Our FEA simulations indicate that Z. varolai exerted an anterior bite force of more than 4000 N and a posterior bite force of more than 10000 N. These values are similar to those estimated for other marine predators known for their powerful bite. This suggests that Z. varolai might have fed upon medium-sized marine vertebrates like other odontocetes. Considering the significant difference observed between the anterior and posterior bite forces, Z. varolai likely fed via ‘grip-and-shear’ feeding, snapping the food items with an anterior bite and then cutting them with a powerful posterior bite. Other macroraptorial sperm whales such as the roughly coeval Acrophyseter from Peru likely employed the same feeding technique.

Biting in the Miocene seas: estimation of the bite force of the macroraptorial sperm whale Zygophyseter varolai using finite element analysis

Collareta A.
Penultimo
;
Bianucci G.
Ultimo
2022-01-01

Abstract

Differing from the extant physeteroids, macroraptorial sperm whales are currently regarded as apex predators of the Miocene seas based on several morphofunctional observations. Here, we estimate the bite force of Zygophyseter varolai, a macroraptorial physeteroid from lower upper Miocene strata of the Pietra leccese formation (Apulia, Italy) using the finite element analysis (FEA). To explore multiple bite scenarios, we set four different load cases on a 3D model of the cranium obtained via digital photogrammetry, considering the temporalis and masseter muscles as jaw adductors. Our FEA simulations indicate that Z. varolai exerted an anterior bite force of more than 4000 N and a posterior bite force of more than 10000 N. These values are similar to those estimated for other marine predators known for their powerful bite. This suggests that Z. varolai might have fed upon medium-sized marine vertebrates like other odontocetes. Considering the significant difference observed between the anterior and posterior bite forces, Z. varolai likely fed via ‘grip-and-shear’ feeding, snapping the food items with an anterior bite and then cutting them with a powerful posterior bite. Other macroraptorial sperm whales such as the roughly coeval Acrophyseter from Peru likely employed the same feeding technique.
2022
Peri, E.; Falkingham, P. L.; Collareta, A.; Bianucci, G.
File in questo prodotto:
File Dimensione Formato  
Biting in the Miocene seas estimation of the bite force of the macroraptorial sperm whale Zygophyseter varolai using finite element analysis.pdf

accesso aperto

Descrizione: versione finale editoriale
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 3.65 MB
Formato Adobe PDF
3.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1117056
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 14
social impact