A stable water-based suspension containing chitin nanofibrils (CN), chitin nanofibrils complexed with nanolignin and the latter containing Vitamin E was prepared starting from CN nanosuspension and nanostructured powders. The water-based coating was deposited by a spray technique on three different renewable and biodegradable films consisting of biodegradable polyesters and starch to prepare possible beauty mask prototypes. After drying, the films were extracted with water to control their potential release on the wet skin and different amounts of released materials were obtained. The results were discussed considering the composition and morphology of the adopted substrates and their interactions with the coating. The eco-compatibility of these films is related to the absence of preservatives and their easy biodegradability in several environmental conditions, decreasing their burden on solid waste management with respect to fossil-based versions.

Biobased and eco-compatible beauty films coated with chitin nanofibrils, nanolignin and vitamin e

Panariello L.
Primo
Writing – Original Draft Preparation
;
Vannozzi A.
Secondo
Data Curation
;
Coltelli M. B.
Penultimo
Writing – Review & Editing
;
Lazzeri Andrea
Ultimo
Supervision
2021-01-01

Abstract

A stable water-based suspension containing chitin nanofibrils (CN), chitin nanofibrils complexed with nanolignin and the latter containing Vitamin E was prepared starting from CN nanosuspension and nanostructured powders. The water-based coating was deposited by a spray technique on three different renewable and biodegradable films consisting of biodegradable polyesters and starch to prepare possible beauty mask prototypes. After drying, the films were extracted with water to control their potential release on the wet skin and different amounts of released materials were obtained. The results were discussed considering the composition and morphology of the adopted substrates and their interactions with the coating. The eco-compatibility of these films is related to the absence of preservatives and their easy biodegradability in several environmental conditions, decreasing their burden on solid waste management with respect to fossil-based versions.
2021
Panariello, L.; Vannozzi, A.; Morganti, Pierfrancesco; Coltelli, M. B.; Lazzeri, Andrea
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1118003
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact