Tissue engineering (TE) is an interdisciplinary field that was introduced from the necessity of finding alternative approaches to transplantation for the treatment of damaged and diseased organs or tissues. Unlike the conventional procedures, TE aims at inducing the regeneration of injured tissues through the implantation of customized and functional engineered tissues, built on the so-called ‘scaffolds’. These provide structural support to cells and regulate the process of new tissue formation. The properties of the scaffold are essentials, and they can be controlled by varying the biomaterial formulation and the fabrication technology used to its production. Pectin is emerging as an alternative biomaterial to non-degradable and high-cost petroleum-based biopolymers commonly used in this field. It shows several promising properties including biocompatibility, biodegradability, non-toxicity and gelling capability. Pectin-based formulations can be processed through different fabrication approaches into bidimensional and three-dimensional scaffolds. This chapter aims at highlighting the potentiality in using pectin as biomaterial in the field of tissue engineering. The most representative applications of pectin in preparing scaffolds for wound healing and tissue regeneration are discussed.
Pectin-Based Scaffolds for Tissue Engineering Applications
Lapomarda, Anna;De Acutis, Aurora;De Maria, Carmelo;Vozzi, Giovanni
2021-01-01
Abstract
Tissue engineering (TE) is an interdisciplinary field that was introduced from the necessity of finding alternative approaches to transplantation for the treatment of damaged and diseased organs or tissues. Unlike the conventional procedures, TE aims at inducing the regeneration of injured tissues through the implantation of customized and functional engineered tissues, built on the so-called ‘scaffolds’. These provide structural support to cells and regulate the process of new tissue formation. The properties of the scaffold are essentials, and they can be controlled by varying the biomaterial formulation and the fabrication technology used to its production. Pectin is emerging as an alternative biomaterial to non-degradable and high-cost petroleum-based biopolymers commonly used in this field. It shows several promising properties including biocompatibility, biodegradability, non-toxicity and gelling capability. Pectin-based formulations can be processed through different fabrication approaches into bidimensional and three-dimensional scaffolds. This chapter aims at highlighting the potentiality in using pectin as biomaterial in the field of tissue engineering. The most representative applications of pectin in preparing scaffolds for wound healing and tissue regeneration are discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.