The toughening mechanisms of poly(lactic acid; PLA) blended with two different elas-tomers, namely poly (butylene adipate-co-terephtalate; PBAT) and polyolefin elastomers with grafted glycidyl methacrylate (POE-g-GMA), at 10 and 20 wt.%, were investigated. Tensile and Charpy impact tests showed a general improvement in the performance of the PLA. The morphology of the dispersed phases showed that PBAT is in the form of spheres while POE-g-GMA has a dual sphere/fibre morphology. To correlate the micromechanical deformation mechanism with the macroscopical mechanical behaviour, the analysis of the subcritical crack tip damaged zone of double-notched specimens subjected to a four-point bending test (according to the single-edge double-notch four-point bend (SEDN-4PB) technique) was carried out using several microscopic techniques (SEM, polarized TOM and TEM). The damage was mainly generated by shear yielding deformation although voids associated with dilatational bands were observed.

Analysis of the damage mechanism around the crack tip for two rubber-toughened pla-based blends

Gigante V.
Primo
;
Bosi L.;Gemmi M.;Aliotta L.
Penultimo
;
Lazzeri A.
Ultimo
2021-01-01

Abstract

The toughening mechanisms of poly(lactic acid; PLA) blended with two different elas-tomers, namely poly (butylene adipate-co-terephtalate; PBAT) and polyolefin elastomers with grafted glycidyl methacrylate (POE-g-GMA), at 10 and 20 wt.%, were investigated. Tensile and Charpy impact tests showed a general improvement in the performance of the PLA. The morphology of the dispersed phases showed that PBAT is in the form of spheres while POE-g-GMA has a dual sphere/fibre morphology. To correlate the micromechanical deformation mechanism with the macroscopical mechanical behaviour, the analysis of the subcritical crack tip damaged zone of double-notched specimens subjected to a four-point bending test (according to the single-edge double-notch four-point bend (SEDN-4PB) technique) was carried out using several microscopic techniques (SEM, polarized TOM and TEM). The damage was mainly generated by shear yielding deformation although voids associated with dilatational bands were observed.
2021
Gigante, V.; Bosi, L.; Parlanti, P.; Gemmi, M.; Aliotta, L.; Lazzeri, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1119899
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact