We construct a hermitian metric on the classifying spaces of graded-polarized mixed Hodge structures and prove analogs of the strong distance estimate [6] between an admissible period map and the approximating nilpotent orbit. We also consider the asymptotic behavior of the biextension metric introduced by Hain [12], analogs of the norm estimates of [19] and the asymptotics of the naive limit Hodge filtration considered in [21].

Asymptotics of degenerations of mixed Hodge structures

Pearlstein G.
Co-primo
2015-01-01

Abstract

We construct a hermitian metric on the classifying spaces of graded-polarized mixed Hodge structures and prove analogs of the strong distance estimate [6] between an admissible period map and the approximating nilpotent orbit. We also consider the asymptotic behavior of the biextension metric introduced by Hain [12], analogs of the norm estimates of [19] and the asymptotics of the naive limit Hodge filtration considered in [21].
2015
Hayama, T.; Pearlstein, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1121204
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact