We show that the zero locus of a normal function on a smooth complex algebraic variety S is algebraic provided that the normal function extends to an admissible normal function on a smooth compactification such that the divisor at infinity is also smooth. This result, which has also been obtained recently by M. Saito using a different method [22], generalizes a previous result proved by the authors for admissible normal functions on curves [4]. © 2009.

Zero loci of admissible normal functions With torsion singularities

Pearlstein G.
Co-primo
2009-01-01

Abstract

We show that the zero locus of a normal function on a smooth complex algebraic variety S is algebraic provided that the normal function extends to an admissible normal function on a smooth compactification such that the divisor at infinity is also smooth. This result, which has also been obtained recently by M. Saito using a different method [22], generalizes a previous result proved by the authors for admissible normal functions on curves [4]. © 2009.
2009
Brosnan, P.; Pearlstein, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1121346
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 7
social impact