The aim of this paper is to extend the Morse theory for geodesics to the conical manifolds. In a previous paper we defined these manifolds as submanifolds of R-n with a finite number of conical singularities. To formulate a good Morse theory we use an appropriate definition of geodesic, introduced in the cited work. The main theorem of this paper (see Theorem 3.6, section 3) proofs that, although the energy is nonsmooth, we can find a continuous retraction of its sublevels in absence of critical points. So, we can give a good definition of index for isolated critical values and for isolated critical points. We prove that Morse relations hold and, at last, we give a definition of multiplicity of geodesics which is geometrical meaningful. In section 5 we compare our theory with the weak slope approach existing in literature. Some examples are also provided.

Morse Theory for Geodesics in Conical Manifolds

GHIMENTI, MARCO GIPO
2007

Abstract

The aim of this paper is to extend the Morse theory for geodesics to the conical manifolds. In a previous paper we defined these manifolds as submanifolds of R-n with a finite number of conical singularities. To formulate a good Morse theory we use an appropriate definition of geodesic, introduced in the cited work. The main theorem of this paper (see Theorem 3.6, section 3) proofs that, although the energy is nonsmooth, we can find a continuous retraction of its sublevels in absence of critical points. So, we can give a good definition of index for isolated critical values and for isolated critical points. We prove that Morse relations hold and, at last, we give a definition of multiplicity of geodesics which is geometrical meaningful. In section 5 we compare our theory with the weak slope approach existing in literature. Some examples are also provided.
Ghimenti, MARCO GIPO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/112287
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact