The translational motion of 4-n-hexyl-4'-cyanobiphenyl (6CB) in its isotropic phase has been studied by atomistic molecular dynamics simulation from 280 to 330 K. The mean square displacement shows evidence of a subdiffusive dynamics, with a plateau that becomes very apparent at the lowest temperatures. A three-time self-intermediate scattering function reveals that this plateau is connected with a homogeneous dynamics that, at longer times, becomes heterogeneous and finally exponential. These features are shared by, for example, a high-density system of hard spheres, which supports the universal character of the translational dynamics of liquids in their supercooled condition. As predicted by the idealized version of the mode-coupling theory (MCT), the diffusion coefficient dependence upon temperature is well described by a power law, with a critical temperature very close to that obtained by experimental measurements on orientational relaxation. This agreement might indicate a complete freezing of both rotational and translational intradomain dynamics. The time-temperature superposition principle also holds. The shape of the cage that surrounds a 6CB molecule has been reconstructed, and this analysis suggests a preferential side-by-side arrangement of molecules, which locally tend to align their long axes even in the isotropic phase.

Anomalous Diffusion and Cage Effects in the Isotropic Phase of a Liquid Crystal

TANI, ALESSANDRO
2007-01-01

Abstract

The translational motion of 4-n-hexyl-4'-cyanobiphenyl (6CB) in its isotropic phase has been studied by atomistic molecular dynamics simulation from 280 to 330 K. The mean square displacement shows evidence of a subdiffusive dynamics, with a plateau that becomes very apparent at the lowest temperatures. A three-time self-intermediate scattering function reveals that this plateau is connected with a homogeneous dynamics that, at longer times, becomes heterogeneous and finally exponential. These features are shared by, for example, a high-density system of hard spheres, which supports the universal character of the translational dynamics of liquids in their supercooled condition. As predicted by the idealized version of the mode-coupling theory (MCT), the diffusion coefficient dependence upon temperature is well described by a power law, with a critical temperature very close to that obtained by experimental measurements on orientational relaxation. This agreement might indicate a complete freezing of both rotational and translational intradomain dynamics. The time-temperature superposition principle also holds. The shape of the cage that surrounds a 6CB molecule has been reconstructed, and this analysis suggests a preferential side-by-side arrangement of molecules, which locally tend to align their long axes even in the isotropic phase.
2007
L., DE GAETANI; G., Prampolini; Tani, Alessandro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/112359
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact