We compare algorithms to sample initial positions and momenta of a molecular system for classical trajectory simulations. We aim at reproducing the phase space quantum distribution for a vibrational eigenstate, as in Wigner theory. Moreover, we address the issue of controlling the total energy and the energy partition among the vibrational modes. In fact, Wigner’s energy distributions are very broad, quite at variance with quantum eigenenergies. Many molecular processes depend sharply on the available energy, so a better energy definition is important. Two approaches are introduced and tested: the first consists in constraining the total energy of each trajectory to equal the quantum eigenenergy. The second approach modifies the phase space distribution so as to reduce the deviation of the single mode energies from the correct quantum values. A combination of the two approaches is also presented.

Sampling initial positions and momenta for nuclear trajectories from quantum mechanical distributions

Giovanni Granucci
Penultimo
;
Maurizio Persico
Ultimo
2021-01-01

Abstract

We compare algorithms to sample initial positions and momenta of a molecular system for classical trajectory simulations. We aim at reproducing the phase space quantum distribution for a vibrational eigenstate, as in Wigner theory. Moreover, we address the issue of controlling the total energy and the energy partition among the vibrational modes. In fact, Wigner’s energy distributions are very broad, quite at variance with quantum eigenenergies. Many molecular processes depend sharply on the available energy, so a better energy definition is important. Two approaches are introduced and tested: the first consists in constraining the total energy of each trajectory to equal the quantum eigenenergy. The second approach modifies the phase space distribution so as to reduce the deviation of the single mode energies from the correct quantum values. A combination of the two approaches is also presented.
2021
Yao, Yuxuan; Hase, William L.; Granucci, Giovanni; Persico, Maurizio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1125584
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact