In ordinary quantile regression, quantiles of different order are estimated one at a time. An alternative approach, which is referred to as quantile regression coefficients modeling (qrcm), is to model quantile regression coefficients as parametric functions of the order of the quantile. In this article, we describe how the (Formula presented.) paradigm can be applied to longitudinal data. We introduce a two-level quantile function, in which two different quantile regression models are used to describe the (conditional) distribution of the within-subject response and that of the individual effects. We propose a novel type of penalized fixed-effects estimator, and discuss its advantages over standard methods based on (Formula presented.) and (Formula presented.) penalization. We provide model identifiability conditions, derive asymptotic properties, describe goodness-of-fit measures and model selection criteria, present simulation results, and discuss an application. The proposed method has been implemented in the R package qrcm.
Parametric Modeling of Quantile Regression Coefficient Functions With Longitudinal Data
Frumento P.
Primo
Methodology
;
2021-01-01
Abstract
In ordinary quantile regression, quantiles of different order are estimated one at a time. An alternative approach, which is referred to as quantile regression coefficients modeling (qrcm), is to model quantile regression coefficients as parametric functions of the order of the quantile. In this article, we describe how the (Formula presented.) paradigm can be applied to longitudinal data. We introduce a two-level quantile function, in which two different quantile regression models are used to describe the (conditional) distribution of the within-subject response and that of the individual effects. We propose a novel type of penalized fixed-effects estimator, and discuss its advantages over standard methods based on (Formula presented.) and (Formula presented.) penalization. We provide model identifiability conditions, derive asymptotic properties, describe goodness-of-fit measures and model selection criteria, present simulation results, and discuss an application. The proposed method has been implemented in the R package qrcm.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.