We introduce the Graph Mixture Density Networks, a new family of machine learning models that can fit multimodal output distributions conditioned on graphs of arbitrary topology. By combining ideas from mixture models and graph representation learning, we address a broader class of challenging conditional density estimation problems that rely on structured data. In this respect, we evaluate our method on a new benchmark application that leverages random graphs for stochastic epidemic simulations. We show a significant improvement in the likelihood of epidemic outcomes when taking into account both multimodality and structure. The empirical analysis is complemented by two real-world regression tasks showing the effectiveness of our approach in modeling the output prediction uncertainty. Graph Mixture Density Networks open appealing research opportunities in the study of structure-dependent phenomena that exhibit nontrivial conditional output distributions.

Graph Mixture Density Networks

Errica, F;Bacciu, D;Micheli, A
2021-01-01

Abstract

We introduce the Graph Mixture Density Networks, a new family of machine learning models that can fit multimodal output distributions conditioned on graphs of arbitrary topology. By combining ideas from mixture models and graph representation learning, we address a broader class of challenging conditional density estimation problems that rely on structured data. In this respect, we evaluate our method on a new benchmark application that leverages random graphs for stochastic epidemic simulations. We show a significant improvement in the likelihood of epidemic outcomes when taking into account both multimodality and structure. The empirical analysis is complemented by two real-world regression tasks showing the effectiveness of our approach in modeling the output prediction uncertainty. Graph Mixture Density Networks open appealing research opportunities in the study of structure-dependent phenomena that exhibit nontrivial conditional output distributions.
File in questo prodotto:
File Dimensione Formato  
errica21a.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.55 MB
Formato Adobe PDF
3.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1126486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 1
social impact