We provide a weaker version of the generalized lifting property that holds in complete generality for all Coxeter groups, and we use it to show that every parabolic Bruhat interval of a finite Coxeter group is a Coxeter matroid. We also describe some combinatorial properties of the associated polytopes.

Weak generalized lifting property, bruhat intervals, and coxeter matroids

D'Adderio M.;
2021-01-01

Abstract

We provide a weaker version of the generalized lifting property that holds in complete generality for all Coxeter groups, and we use it to show that every parabolic Bruhat interval of a finite Coxeter group is a Coxeter matroid. We also describe some combinatorial properties of the associated polytopes.
2021
Caselli, F.; D'Adderio, M.; Marietti, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1126728
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact