Food stores and supermarkets are buildings, often with rather similar structures charac-terized by large surfaces and a single floor, that are particularly energy intensive. The energy uses associated with them are mainly electrical, in connection with air conditioning and food refrigeration. These buildings are particularly interesting for a systematic application of photovoltaic (PV) generation technology. After an analysis of the main energy consumption parameters and of the most common benchmarking approaches, standard solutions for the sizing of photovoltaic systems are proposed based on different design objectives, highlighting the potential of each solution proposed. Two specific indicators are defined for the sizing processes. The methodology is tested with reference to two different stores under the zero grid-injection restriction. The results showed how the degree of self-sufficiency for a supermarket obtained with a PV plant can be of the order of 20% in cases without storage system and can be increased over 50% and up to 70–75% but only using relevant battery storage dimensions.

Energy sustainability of food stores and supermarkets through the installation of pv integrated plants

Franco A.
;
Cillari G.
2021-01-01

Abstract

Food stores and supermarkets are buildings, often with rather similar structures charac-terized by large surfaces and a single floor, that are particularly energy intensive. The energy uses associated with them are mainly electrical, in connection with air conditioning and food refrigeration. These buildings are particularly interesting for a systematic application of photovoltaic (PV) generation technology. After an analysis of the main energy consumption parameters and of the most common benchmarking approaches, standard solutions for the sizing of photovoltaic systems are proposed based on different design objectives, highlighting the potential of each solution proposed. Two specific indicators are defined for the sizing processes. The methodology is tested with reference to two different stores under the zero grid-injection restriction. The results showed how the degree of self-sufficiency for a supermarket obtained with a PV plant can be of the order of 20% in cases without storage system and can be increased over 50% and up to 70–75% but only using relevant battery storage dimensions.
Franco, A.; Cillari, G.
File in questo prodotto:
File Dimensione Formato  
energies-14-05678.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 3.03 MB
Formato Adobe PDF
3.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1126825
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact