Maritime transportation is recognized to have advantages in terms of environmental impact compared to other forms of transportation. However, an increment in traffic volumes will also produce an increase in noise emissions in the surroundings for a greener source, as ports are frequently surrounded by urban areas. When more sources or higher noise emissions are introduced, the noise exposure of citizens increases, and the likelihood of official complaints rises. As a consequence, among the most demanding aspects of port management is effective noise management aimed at a reduction in the exposure of citizens while ensuring the growth of maritime traffic. At the same time, the topic has not been thoroughly studied by the scientific community, mostly because port areas are challenging from a noise management point of view; they are often characterized by a high degree of complexity, both in terms of the number of different noise sources and their interaction with the other main transportation infrastructure. Therefore, an effective methodology of noise modeling of the port area is currently missing. With regard to the INTERREG Maritime Program, the present paper reports a first attempt to define noise mapping guidelines. On the basis of the current state-of-the-art and the authors’ experiences, noise sources inside port areas can be divided into several different categories: road sources, railway sources, ship sources, port sources, and industrial sources. A further subdivision can be achieved according to the working operation mode and position of the sources. This classification simplifies actions of identification of the responsible source from control bodies, in the case that noise limits are exceeded or citizen complaints arise. It also represents a necessary tool to identify the best placing of medium/long-term noise monitoring stations. The results also act as a base for a future definition of specific and targeted procedures for the acoustic characterization of port noise sources.

Classification of noise sources for port area noise mapping

Fidecaro F.;
2021-01-01

Abstract

Maritime transportation is recognized to have advantages in terms of environmental impact compared to other forms of transportation. However, an increment in traffic volumes will also produce an increase in noise emissions in the surroundings for a greener source, as ports are frequently surrounded by urban areas. When more sources or higher noise emissions are introduced, the noise exposure of citizens increases, and the likelihood of official complaints rises. As a consequence, among the most demanding aspects of port management is effective noise management aimed at a reduction in the exposure of citizens while ensuring the growth of maritime traffic. At the same time, the topic has not been thoroughly studied by the scientific community, mostly because port areas are challenging from a noise management point of view; they are often characterized by a high degree of complexity, both in terms of the number of different noise sources and their interaction with the other main transportation infrastructure. Therefore, an effective methodology of noise modeling of the port area is currently missing. With regard to the INTERREG Maritime Program, the present paper reports a first attempt to define noise mapping guidelines. On the basis of the current state-of-the-art and the authors’ experiences, noise sources inside port areas can be divided into several different categories: road sources, railway sources, ship sources, port sources, and industrial sources. A further subdivision can be achieved according to the working operation mode and position of the sources. This classification simplifies actions of identification of the responsible source from control bodies, in the case that noise limits are exceeded or citizen complaints arise. It also represents a necessary tool to identify the best placing of medium/long-term noise monitoring stations. The results also act as a base for a future definition of specific and targeted procedures for the acoustic characterization of port noise sources.
2021
Fredianelli, L.; Bolognese, M.; Fidecaro, F.; Licitra, G.
File in questo prodotto:
File Dimensione Formato  
environments-08-00012.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 3.8 MB
Formato Adobe PDF
3.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1127543
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 28
social impact