This paper presents the experimental activities performed by the NATO STO Centre for Maritime Research and Experimentation (CMRE) during the CommsNet17 trial where a persistent Underwater Acoustic Sensor Network (UASN) was deployed. The CommsNet17 trial was held from the 27 th of November to the 6 th of December in the Gulf of La Spezia (IT), close to the CMRE premises, using the CMRE Littoral Ocean Observatory Network (LOON) as one of its key components. A network consisting of up to eleven nodes was deployed, including static and mobile assets. Various aspects related to persistent UASNs were addressed, including autonomous and distributed network discovery and node configuration, node localisation and navigation, self-adjustment of the network topology in support to the assigned tasks, underwater docking, wireless battery recharging and data offloading. The collected results show that the employed solutions were able to successfully complete all these tasks, thus demonstrating the effective deployment of a persistent, distributed and ad-hoc UASN.

Deployment of a Persistent Underwater Acoustic Sensor Network: The CommsNet17 Experience

Munafo', A
Ultimo
;
2018-01-01

Abstract

This paper presents the experimental activities performed by the NATO STO Centre for Maritime Research and Experimentation (CMRE) during the CommsNet17 trial where a persistent Underwater Acoustic Sensor Network (UASN) was deployed. The CommsNet17 trial was held from the 27 th of November to the 6 th of December in the Gulf of La Spezia (IT), close to the CMRE premises, using the CMRE Littoral Ocean Observatory Network (LOON) as one of its key components. A network consisting of up to eleven nodes was deployed, including static and mobile assets. Various aspects related to persistent UASNs were addressed, including autonomous and distributed network discovery and node configuration, node localisation and navigation, self-adjustment of the network topology in support to the assigned tasks, underwater docking, wireless battery recharging and data offloading. The collected results show that the employed solutions were able to successfully complete all these tasks, thus demonstrating the effective deployment of a persistent, distributed and ad-hoc UASN.
2018
978-153861654-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1130012
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 0
social impact