Metal and metal oxide nanocrystals have sparked great interest due to their excellent catalytic, magnetic, and electronic properties. Particularly, the integration of metallic nanocrystals and one-dimensional (1D) electronically conducting carbons to form metal-carbon hybrids can lead to enhanced physical and chemical properties or even the creation of new properties with respect to single component materials. However, direct access to thermally stable and structurally ordered 1D metal-carbon hybrids remains a primary challenge. We report an in situ fabrication of Co(3)O(4) or Pt nanocrystals incorporated into 1D nanoporous carbons (NPCs) via an organometallic precursor-controlled thermolysis approach. The AB(2)-type (one diene and two dienophile) 3,4-bis(4-dodecynylphenyl)-substituted cyclopentadienone and its relevant cobalt or platinum complex are first impregnated into the nanochannels of AAO (anodic alumina oxide) membranes. The intermolecular Diels-Alder reaction of these precursor molecules affords the formation of cobalt or platinum functionalized polyphenylene skeletons. Subsequent thermolysis transforms the polyphenylene backbones into 1D nanoporous carbonaceous frameworks, while the metallic moieties are reduced into Co(3)O(4) or Pt nanocrystals, respectively. After removal of the AAO template, 1D NPCs/Co(3)O(4) or NPCs/Pt are obtained, for which structural characterizations reveal that high-quality Co(3)O(4) or Pt nanocrystals are distributed homogeneously within carbon frameworks. These unique 1D metal-carbon hybrids exhibit a promising potential in electrochemical energy storage. NPCs/Co(3)O(4) is evaluated as an electrode material in a supercapacitor, for which Co(3)O(4) nanocrystals contribute an exceptionally high gravimetric capacitance value of 1066 F g(-1). NPCs/Pt is applied as an electrocatalyst showing excellent catalytic efficiency toward methanol oxidation in comparison to commercial E-TEK (Pt/C) catalyst. RI Kolb, Ute/A-2642-2011; Mugnaioli, Enrico/E-6237-2011

Direct Access to Metal or Metal Oxide Nanocrystals Integrated with One-Dimensional Nanoporous Carbons for Electrochemical Energy Storage

Mugnaioli E;
2010-01-01

Abstract

Metal and metal oxide nanocrystals have sparked great interest due to their excellent catalytic, magnetic, and electronic properties. Particularly, the integration of metallic nanocrystals and one-dimensional (1D) electronically conducting carbons to form metal-carbon hybrids can lead to enhanced physical and chemical properties or even the creation of new properties with respect to single component materials. However, direct access to thermally stable and structurally ordered 1D metal-carbon hybrids remains a primary challenge. We report an in situ fabrication of Co(3)O(4) or Pt nanocrystals incorporated into 1D nanoporous carbons (NPCs) via an organometallic precursor-controlled thermolysis approach. The AB(2)-type (one diene and two dienophile) 3,4-bis(4-dodecynylphenyl)-substituted cyclopentadienone and its relevant cobalt or platinum complex are first impregnated into the nanochannels of AAO (anodic alumina oxide) membranes. The intermolecular Diels-Alder reaction of these precursor molecules affords the formation of cobalt or platinum functionalized polyphenylene skeletons. Subsequent thermolysis transforms the polyphenylene backbones into 1D nanoporous carbonaceous frameworks, while the metallic moieties are reduced into Co(3)O(4) or Pt nanocrystals, respectively. After removal of the AAO template, 1D NPCs/Co(3)O(4) or NPCs/Pt are obtained, for which structural characterizations reveal that high-quality Co(3)O(4) or Pt nanocrystals are distributed homogeneously within carbon frameworks. These unique 1D metal-carbon hybrids exhibit a promising potential in electrochemical energy storage. NPCs/Co(3)O(4) is evaluated as an electrode material in a supercapacitor, for which Co(3)O(4) nanocrystals contribute an exceptionally high gravimetric capacitance value of 1066 F g(-1). NPCs/Pt is applied as an electrocatalyst showing excellent catalytic efficiency toward methanol oxidation in comparison to commercial E-TEK (Pt/C) catalyst. RI Kolb, Ute/A-2642-2011; Mugnaioli, Enrico/E-6237-2011
2010
Liang, Yy; Schwab, Mg; Zhi, Lj; Mugnaioli, E; Kolb, U; Feng, Xl; Mullen, K
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1131199
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 145
social impact