New strategies to promote neuronal regeneration should aim to increase the speed of axonal elongation. Biochemical signaling is a key factor in axon growth, but recent discoveries have shown that mechanical force, through a process referred to as stretch growth, can significantly influence the elongation rate. Here, we develop a method to apply forces to primary hippocampal neurons from mice using magnetic microposts that actuate in response to an external magnetic field. Neurons are cultured onto these microposts and subjected to an average displacement of 0.2 μm at a frequency of 5 Hz. We find that the mechanical stimulation promotes an increase in the length of the axons compared to control conditions. In addition, there is an increase in the density of microtubules and in the amount of cisternae of the endoplasmic reticulum, providing evidence that stretch growth is accompanied by a mass addition to the neurite. Together, these results indicate that magnetically-actuated microposts can accelerate the rate of axon growth, paving the way for future applications in neuronal regeneration. Video abstract: [Figure presented]

Magnetically-actuated microposts stimulate axon growth

Falconieri A.;De Vincentiis S.;Raffa V.
2022-01-01

Abstract

New strategies to promote neuronal regeneration should aim to increase the speed of axonal elongation. Biochemical signaling is a key factor in axon growth, but recent discoveries have shown that mechanical force, through a process referred to as stretch growth, can significantly influence the elongation rate. Here, we develop a method to apply forces to primary hippocampal neurons from mice using magnetic microposts that actuate in response to an external magnetic field. Neurons are cultured onto these microposts and subjected to an average displacement of 0.2 μm at a frequency of 5 Hz. We find that the mechanical stimulation promotes an increase in the length of the axons compared to control conditions. In addition, there is an increase in the density of microtubules and in the amount of cisternae of the endoplasmic reticulum, providing evidence that stretch growth is accompanied by a mass addition to the neurite. Together, these results indicate that magnetically-actuated microposts can accelerate the rate of axon growth, paving the way for future applications in neuronal regeneration. Video abstract: [Figure presented]
2022
Falconieri, A.; Taparia, N.; De Vincentiis, S.; Cappello, V.; Sniadecki, N. J.; Raffa, V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1131704
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact