We show the existence of several infinite monochromatic patterns in the integers obtained as values of suitable symmetric polynomials; in particular, we obtain extensions of both the additive and multiplicative versions of Hindman's theorem. These configurations are obtained by means of suitable symmetric polynomials that mix the two operations. The simplest example is the following. For every finite coloring N=C1∪…∪Cr there exists an infinite increasing sequence a<… such that all elements below are monochromatic: a,b,c,…,a+b+ab,a+c+ac,b+c+bc,…,a+b+c+ab+ac+bc+abc,…. The proofs use tools from algebra in the space of ultrafilters βZ.

Infinite monochromatic patterns in the integers

Di Nasso M.
2022-01-01

Abstract

We show the existence of several infinite monochromatic patterns in the integers obtained as values of suitable symmetric polynomials; in particular, we obtain extensions of both the additive and multiplicative versions of Hindman's theorem. These configurations are obtained by means of suitable symmetric polynomials that mix the two operations. The simplest example is the following. For every finite coloring N=C1∪…∪Cr there exists an infinite increasing sequence a<… such that all elements below are monochromatic: a,b,c,…,a+b+ab,a+c+ac,b+c+bc,…,a+b+c+ab+ac+bc+abc,…. The proofs use tools from algebra in the space of ultrafilters βZ.
2022
Di Nasso, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1132544
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact