A low-speed stereo-camera DIC setup was used in this paper to measure the down-sampled bandpass vibration signal of a plate in a given frequency range, which is much higher than the available frame rate. Down-sampled vibration measurements are well known in the literature. However, they are always subject to the strong hypothesis of having a single frequency component in the excitation source (e.g., pure sinusoidal excitation). In this scenario, several approaches can be found in the literature to reconstruct the actual response from the down-sampled data. In this paper, a data postprocessing algorithm is newly introduced to properly reconstruct the target response in the case of a frequency band excitation, thus relaxing the single frequency excitation constraint and allowing to explore a given frequency range with a single measurement. Additionally, a custom excitation signal is presented in this paper to achieve a constant intensity in the studied frequency range. The proposed approach is presented and experimentally validated by measuring a cantilever plate vibration in the kHz range using a 100 fps acquisition. A single acquisition of 98 frames allowed to describe the deformed shapes at 49 different frequency values in the range 1110-1160 Hz, highlighting two resonance peaks. The comparison with the results of multiple conventional single-frequency tests and LDV measurements confirmed the effectiveness of the proposed approach.

Frequency-band down-sampled stereo-DIC: Beyond the limitation of single frequency excitation

Paolo Neri
Primo
2022-01-01

Abstract

A low-speed stereo-camera DIC setup was used in this paper to measure the down-sampled bandpass vibration signal of a plate in a given frequency range, which is much higher than the available frame rate. Down-sampled vibration measurements are well known in the literature. However, they are always subject to the strong hypothesis of having a single frequency component in the excitation source (e.g., pure sinusoidal excitation). In this scenario, several approaches can be found in the literature to reconstruct the actual response from the down-sampled data. In this paper, a data postprocessing algorithm is newly introduced to properly reconstruct the target response in the case of a frequency band excitation, thus relaxing the single frequency excitation constraint and allowing to explore a given frequency range with a single measurement. Additionally, a custom excitation signal is presented in this paper to achieve a constant intensity in the studied frequency range. The proposed approach is presented and experimentally validated by measuring a cantilever plate vibration in the kHz range using a 100 fps acquisition. A single acquisition of 98 frames allowed to describe the deformed shapes at 49 different frequency values in the range 1110-1160 Hz, highlighting two resonance peaks. The comparison with the results of multiple conventional single-frequency tests and LDV measurements confirmed the effectiveness of the proposed approach.
2022
Neri, Paolo
File in questo prodotto:
File Dimensione Formato  
REV1_DownsamplingFrequencyBand_Clean.pdf

Open Access dal 06/03/2024

Descrizione: Post-Print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1132624
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 8
social impact