Nanophotonic chiral antennas exhibit orders of magnitude higher circular dichroism (CD) compared to molecular systems. When the structural chirality is merged with magnetism at the nanoscale, efficient magnetic control over the dichroic response is achieved, bringing exciting prospects to active nanophotonic devices. Here, we devise macroscopic enantiomeric magnetophotonic metasurfaces of plasmonic-ferromagnetic spiral antennas assembled on large areas via hole-mask colloidal lithography. The simultaneous presence of 3D- and 2D-features in chiral nanoantennas induces large CD response, where we identify reciprocal and non-reciprocal contributions, respectively. Exploring further this type of magnetophotonic metasurfaces might allow the realization of high-sensitivity chiral sensors and prompts the design of advanced macroscopic optical devices operating with polarized light.
Macroscopic magneto-chiroptical metasurfaces
Gaia Petrucci;Alessio Gabbani;Francesco Pineider
Ultimo
2021-01-01
Abstract
Nanophotonic chiral antennas exhibit orders of magnitude higher circular dichroism (CD) compared to molecular systems. When the structural chirality is merged with magnetism at the nanoscale, efficient magnetic control over the dichroic response is achieved, bringing exciting prospects to active nanophotonic devices. Here, we devise macroscopic enantiomeric magnetophotonic metasurfaces of plasmonic-ferromagnetic spiral antennas assembled on large areas via hole-mask colloidal lithography. The simultaneous presence of 3D- and 2D-features in chiral nanoantennas induces large CD response, where we identify reciprocal and non-reciprocal contributions, respectively. Exploring further this type of magnetophotonic metasurfaces might allow the realization of high-sensitivity chiral sensors and prompts the design of advanced macroscopic optical devices operating with polarized light.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.