We generalize the concept of a cycle from graphs to simplicial complexes. We show that a simplicial cycle is either a sequence of facets connected in the shape of a circle, or is a cone over such a structure. We show that a simplicial tree is a connected cycle-free simplicial complex, and use this characterization to produce an algorithm that checks in polynomial time whether a simplicial complex is a tree. We also present an efficient algorithm for checking whether a simplicial complex is grafted, and therefore Cohen-Macaulay
Simplicial cycles and the computation of symplicial trees
CABOARA, MASSIMO;
2007-01-01
Abstract
We generalize the concept of a cycle from graphs to simplicial complexes. We show that a simplicial cycle is either a sequence of facets connected in the shape of a circle, or is a cone over such a structure. We show that a simplicial tree is a connected cycle-free simplicial complex, and use this characterization to produce an algorithm that checks in polynomial time whether a simplicial complex is a tree. We also present an efficient algorithm for checking whether a simplicial complex is grafted, and therefore Cohen-MacaulayFile in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.