The nonlinear dynamics of cantilever bistable shells with asymmetric stable configurations is investigated. The possibility of maximizing the kinetic energy associated with snap-through motion offered by the considered cantilevered shells is pursued to enhance the sought-after energy harvesting capabilities. Through an experimental campaign under harmonic forcing the resonance scenarios around the stable configurations are analysed. The resulting nonlinear behaviour observed for high amplitude excitation is adopted to guide a reduced order model derivation. By combining the experimental response with two double-well oscillators derived from FE simulations, a double-well quintic oscillator capturing the observed softening behaviour is proposed. It involves a parameter identification phase in which a nonlinear damping model is introduced. A numerical continuation approach is adopted to discuss the local periodic solutions around each stable configuration in terms of resonance curves, bifurcation diagrams and basins of attraction. The global dynamics involving regular and chaotic dynamic regimes as well as snap-through motion is eventually described.

Nonlinear dynamics of bistable composite cantilever shells: An experimental and modelling study

Brunetti M.
;
2022-01-01

Abstract

The nonlinear dynamics of cantilever bistable shells with asymmetric stable configurations is investigated. The possibility of maximizing the kinetic energy associated with snap-through motion offered by the considered cantilevered shells is pursued to enhance the sought-after energy harvesting capabilities. Through an experimental campaign under harmonic forcing the resonance scenarios around the stable configurations are analysed. The resulting nonlinear behaviour observed for high amplitude excitation is adopted to guide a reduced order model derivation. By combining the experimental response with two double-well oscillators derived from FE simulations, a double-well quintic oscillator capturing the observed softening behaviour is proposed. It involves a parameter identification phase in which a nonlinear damping model is introduced. A numerical continuation approach is adopted to discuss the local periodic solutions around each stable configuration in terms of resonance curves, bifurcation diagrams and basins of attraction. The global dynamics involving regular and chaotic dynamic regimes as well as snap-through motion is eventually described.
2022
Brunetti, M.; Mitura, A.; Romeo, F.; Warminski, J.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1134902
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact