Sinonasal carcinomas are a heterogeneous group of rare tumors, often with high-grade and/or undifferentiated morphology and aggressive clinical course. In recent years, with increasing molecular testing, unique sinonasal tumor subsets have been identified based on specific genetic alterations, including protein expression, chromosomal translocations, specific gene mutations, or infection by oncogenic viruses. These include, among others, the identification of a subset of sinonasal carcinomas associated with HPV infection, the identification of a subset of squamous cell carcinomas with EGFR alterations, and of rare variants with chromosomal translocations (DEK::AFF2, ETV6::NTRK and others). The group of sinonasal adenocarcinomas remains very heterogeneous at the molecular level, but some recurrent and potentially targetable genetic alterations have been identified. Finally, poorly differentiated and undifferentiated sinonasal carcinomas have undergone a significant refinement of their subtyping, with the identification of several new novel molecular subgroups, such as NUT carcinoma, IDH mutated sinonasal undifferentiated carcinoma and SWI/SNF deficient sinonasal malignancies. Thus, molecular profiling is progressively integrated in the histopathologic classification of sinonasal carcinomas, and it is likely to influence the management of these tumors in the near future. In this review, we summarize the recent developments in the molecular characterization of sinonasal carcinomas and we discuss how these findings are likely to contribute to the classification of this group of rare tumors, with a focus on the potential new opportunities for treatment.

Towards a Molecular Classification of Sinonasal Carcinomas: Clinical Implications and Opportunities

Franchi A.
2022-01-01

Abstract

Sinonasal carcinomas are a heterogeneous group of rare tumors, often with high-grade and/or undifferentiated morphology and aggressive clinical course. In recent years, with increasing molecular testing, unique sinonasal tumor subsets have been identified based on specific genetic alterations, including protein expression, chromosomal translocations, specific gene mutations, or infection by oncogenic viruses. These include, among others, the identification of a subset of sinonasal carcinomas associated with HPV infection, the identification of a subset of squamous cell carcinomas with EGFR alterations, and of rare variants with chromosomal translocations (DEK::AFF2, ETV6::NTRK and others). The group of sinonasal adenocarcinomas remains very heterogeneous at the molecular level, but some recurrent and potentially targetable genetic alterations have been identified. Finally, poorly differentiated and undifferentiated sinonasal carcinomas have undergone a significant refinement of their subtyping, with the identification of several new novel molecular subgroups, such as NUT carcinoma, IDH mutated sinonasal undifferentiated carcinoma and SWI/SNF deficient sinonasal malignancies. Thus, molecular profiling is progressively integrated in the histopathologic classification of sinonasal carcinomas, and it is likely to influence the management of these tumors in the near future. In this review, we summarize the recent developments in the molecular characterization of sinonasal carcinomas and we discuss how these findings are likely to contribute to the classification of this group of rare tumors, with a focus on the potential new opportunities for treatment.
2022
Taverna, C.; Agaimy, A.; Franchi, A.
File in questo prodotto:
File Dimensione Formato  
cancers-14-01463.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 4.87 MB
Formato Adobe PDF
4.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1135009
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact