We propose a deep Graph Neural Network (GNN) model that alternates two types of layers. The first type is inspired by Reservoir Computing (RC) and generates new vertex features by iterating a non-linear map until it converges to a fixed point. The second type of layer implements graph pooling operations, that gradually reduce the support graph and the vertex features, and further improve the computational efficiency of the RC-based GNN. The architecture is, therefore, pyramidal. In the last layer, the features of the remaining vertices are combined into a single vector, which represents the graph embedding. Through a mathematical derivation introduced in this paper, we show formally how graph pooling can reduce the computational complexity of the model and speed-up the convergence of the dynamical updates of the vertex features. Our proposed approach to the design of RC-based GNNs offers an advantageous and principled trade-off between accuracy and complexity, which we extensively demonstrate in experiments on a large set of graph datasets.

Pyramidal Reservoir Graph Neural Network

Bianchi F. M.;Gallicchio C.
;
Micheli A.
2022-01-01

Abstract

We propose a deep Graph Neural Network (GNN) model that alternates two types of layers. The first type is inspired by Reservoir Computing (RC) and generates new vertex features by iterating a non-linear map until it converges to a fixed point. The second type of layer implements graph pooling operations, that gradually reduce the support graph and the vertex features, and further improve the computational efficiency of the RC-based GNN. The architecture is, therefore, pyramidal. In the last layer, the features of the remaining vertices are combined into a single vector, which represents the graph embedding. Through a mathematical derivation introduced in this paper, we show formally how graph pooling can reduce the computational complexity of the model and speed-up the convergence of the dynamical updates of the vertex features. Our proposed approach to the design of RC-based GNNs offers an advantageous and principled trade-off between accuracy and complexity, which we extensively demonstrate in experiments on a large set of graph datasets.
2022
Bianchi, F. M.; Gallicchio, C.; Micheli, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1135128
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 2
social impact