We prove that given two metrics g(+) and g(-) with curvature kappa < -1 on a closed, oriented surface S of genus tau >= 2, there exists an AdS(3) manifold N with smooth, space-like, strictly convex boundary such that the induced metrics on the two connected components of. N are equal to g(+) and g(-). Using the duality between convex space-like surfaces in AdS(3), we obtain an equivalent result about the prescription of the third fundamental form. This answers partially Question 3.5 in [1].

Prescribing metrics on the boundary of anti-de Sitter 3-manifolds

Tamburelli, Andrea
Primo
2016-01-01

Abstract

We prove that given two metrics g(+) and g(-) with curvature kappa < -1 on a closed, oriented surface S of genus tau >= 2, there exists an AdS(3) manifold N with smooth, space-like, strictly convex boundary such that the induced metrics on the two connected components of. N are equal to g(+) and g(-). Using the duality between convex space-like surfaces in AdS(3), we obtain an equivalent result about the prescription of the third fundamental form. This answers partially Question 3.5 in [1].
2016
Tamburelli, Andrea
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1137050
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 7
social impact