Organic municipal solid waste (OMSW) as a feedstock for energy recovery and material recycling offers the potential to reduce environmental impacts from energy production while displacing emission-intensive waste management strategies such as landfills. This paper quantifies the environmental impact of anaerobic digestion of local, residual biomass. A life-cycle assessment was jointly performed for two scenarios for the biological treatment of local organic municipal solid waste and pig manure in the Netherlands. Scenario 1 was a separate treatment using anaerobic digestion, and Scenario 2 was a bio-refinery system that integrates anaerobic digestion of organic, municipal solid waste, and co-digestion of pig manure and other organic co-substrates∖. For both scenarios, electricity and heat are generated using a combined heat and power engine. The bio-refinery system (Scenario 2) contribution to climate change resulted in 0.16 Mt CO2 eq./yr, which is lower than the 0.17 Mt CO2 eq./yr of Scenario 1. Both scenarios are found to be beneficial with regard to resource depletion and human toxicity. The integration of organic waste and manure anaerobic digestion has no effect on acidification and terrestrial eutrophication impact categories, resulting in 43.59 AE eq. and 86.33 AE eq. for Scenario 1 and 43.58 AE eq. and 86.30 AE eq. for Scenario 2. Moreover, Scenario 2 yields 18% lower emissions than those from natural gas derived electricity in the Netherlands. The biorefinery system represents an opportunity to improve organic waste-management strategies, at the same time as reducing the environmental impact from energy production and the costs for surplus manure disposal by producing high-quality commodities that can be traded on the market.

Environmental assessment of waste feedstock mono-dimensional and bio-refinery systems: Combining manure co-digestion and municipal waste anaerobic digestion

Moretti M.
Primo
Writing – Original Draft Preparation
;
2018-01-01

Abstract

Organic municipal solid waste (OMSW) as a feedstock for energy recovery and material recycling offers the potential to reduce environmental impacts from energy production while displacing emission-intensive waste management strategies such as landfills. This paper quantifies the environmental impact of anaerobic digestion of local, residual biomass. A life-cycle assessment was jointly performed for two scenarios for the biological treatment of local organic municipal solid waste and pig manure in the Netherlands. Scenario 1 was a separate treatment using anaerobic digestion, and Scenario 2 was a bio-refinery system that integrates anaerobic digestion of organic, municipal solid waste, and co-digestion of pig manure and other organic co-substrates∖. For both scenarios, electricity and heat are generated using a combined heat and power engine. The bio-refinery system (Scenario 2) contribution to climate change resulted in 0.16 Mt CO2 eq./yr, which is lower than the 0.17 Mt CO2 eq./yr of Scenario 1. Both scenarios are found to be beneficial with regard to resource depletion and human toxicity. The integration of organic waste and manure anaerobic digestion has no effect on acidification and terrestrial eutrophication impact categories, resulting in 43.59 AE eq. and 86.33 AE eq. for Scenario 1 and 43.58 AE eq. and 86.30 AE eq. for Scenario 2. Moreover, Scenario 2 yields 18% lower emissions than those from natural gas derived electricity in the Netherlands. The biorefinery system represents an opportunity to improve organic waste-management strategies, at the same time as reducing the environmental impact from energy production and the costs for surplus manure disposal by producing high-quality commodities that can be traded on the market.
2018
Moretti, M.; Van Dael, M.; Malina, R.; Van Passel, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1138148
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 23
social impact