In this paper, we present a comparative study of the redox properties of the icosahedral [Rh12E(CO)27]n− (n = 4 when E = Ge or Sn and n = 3 when E = Sb or Bi) family of clusters through in situ infrared spectroelectrochemistry experiments and density functional theory computational studies. These clusters show shared characteristics in terms of molecular structure, being all E-centered icosahedral species, and electron counting, possessing 170 valence electrons as predicted by the electron-counting rules, based on the cluster-borane analogy, for compounds with such metal geometry. However, in some cases, clusters of similar nuclearity, and beyond, may show multivalence behavior and may be stable with a different electron counting, at least on the time scale of the electrochemical analyses. The experimental results, confirmed by theoretical calculations, showed a remarkable electron-sponge behavior for [Rh12Ge(CO)27]4− (1), [Rh12Sb(CO)27]3− (3), and [Rh12Bi(CO)27]3− (4), with a cluster charge going from −2 to −6 for 1 and 3 and from −2 to −7 for cluster 4, making them examples of molecular electron reservoirs. The [Rh12Sn(CO)27]4− (2) derivative, conversely, presents a limited ability to exist in separable reduced cluster species, at least within the experimental conditions, while in the gas phase it appears to be stable both as a penta- and hexa-anion, therefore showing a similar redox activity as its congeners. As a fallout of those studies, during the preparation of [Rh12Sb(CO)27]3−, we were able to isolate a new species, namely, [Rh11Sb(CO)26]2−, which presents a Sb-centered nido-icosahedral metal structure possessing 158 cluster valence electrons, in perfect agreement with the polyhedral skeletal electron pair theory.

Heterometallic Rhodium Clusters as Possible Nanocapacitors: Chemical, Electrochemical and Theoretical Studies of the Centred-Icosahedral [Rh12E(CO)27]n- Atomically-Precise Carbonyl Compounds

Tiziana Funaioli;
2021-01-01

Abstract

In this paper, we present a comparative study of the redox properties of the icosahedral [Rh12E(CO)27]n− (n = 4 when E = Ge or Sn and n = 3 when E = Sb or Bi) family of clusters through in situ infrared spectroelectrochemistry experiments and density functional theory computational studies. These clusters show shared characteristics in terms of molecular structure, being all E-centered icosahedral species, and electron counting, possessing 170 valence electrons as predicted by the electron-counting rules, based on the cluster-borane analogy, for compounds with such metal geometry. However, in some cases, clusters of similar nuclearity, and beyond, may show multivalence behavior and may be stable with a different electron counting, at least on the time scale of the electrochemical analyses. The experimental results, confirmed by theoretical calculations, showed a remarkable electron-sponge behavior for [Rh12Ge(CO)27]4− (1), [Rh12Sb(CO)27]3− (3), and [Rh12Bi(CO)27]3− (4), with a cluster charge going from −2 to −6 for 1 and 3 and from −2 to −7 for cluster 4, making them examples of molecular electron reservoirs. The [Rh12Sn(CO)27]4− (2) derivative, conversely, presents a limited ability to exist in separable reduced cluster species, at least within the experimental conditions, while in the gas phase it appears to be stable both as a penta- and hexa-anion, therefore showing a similar redox activity as its congeners. As a fallout of those studies, during the preparation of [Rh12Sb(CO)27]3−, we were able to isolate a new species, namely, [Rh11Sb(CO)26]2−, which presents a Sb-centered nido-icosahedral metal structure possessing 158 cluster valence electrons, in perfect agreement with the polyhedral skeletal electron pair theory.
2021
Cesari, Cristiana; Femoni, Cristina; Funaioli, Tiziana; Carmele Iapalucci, Maria; Rivalta, Ivan; Ruggieri, Silvia; Zacchini, Stefano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1139734
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact