The μ-(amino)alkylidyne complex [Fe2Cp2(CO)2(μ-CO){μ-CNMe(CH2CHCH2)}]CF3SO3, [1]CF3SO3, reacted with NBu4CN in dichloromethane affording the μ-(cyano)(amino)alkylidene [Fe2Cp2(CO)2(μ-CO){μ-C(CN)N(Me)(CH2CHCH2)}], 2, in 91% yield. Decarbonylation of 2 by using Me3NO in acetone at room temperature yielded [Fe2Cp2(CO)(μ-CO){μ-κ3C-C(CN)N(Me)(CH2CHCH2)}], 3, containing a multidentate alkylidene-alkene ligand occupying both a bridging site and a terminal site, in admixture with the μ-(amino)alkylidyne cyanide product [Fe2Cp2(CN)(CO)(μ-CO){μ-CN(Me)(CH2CHCH2)}], 4. The reaction of the μ-(amino)alkylidyne imine complex [Fe2Cp2(CO)(μ-CO)(NHCPh2){μ-CN(Me)(CH2CHCH2)}]CF3SO3, [7]CF3SO3, with NBu4CN gave 3 with an optimized yield of 75% via imine elimination. According to DFT calculations, 3 is less stable than its geometric isomer 4 by 13.4 kcal mol-1 and quantitative conversion to 4 was achieved by refluxing a THF solution of 3 for 2 hours. No replacement of alkene coordination occurred upon treating 3 with CO or PPh3. The previously unknown compounds 2, 3, 4 and [7]CF3SO3 were fully characterized by analytical and spectroscopic techniques and the structure of 3 was elucidated by single crystal X-ray diffraction.

Cyanide-alkene competition in a diiron complex and isolation of a multisite (cyano)alkylidene-alkene species

Bresciani G.
Primo
;
Biancalana L.;Marchetti F.
Ultimo
2022-01-01

Abstract

The μ-(amino)alkylidyne complex [Fe2Cp2(CO)2(μ-CO){μ-CNMe(CH2CHCH2)}]CF3SO3, [1]CF3SO3, reacted with NBu4CN in dichloromethane affording the μ-(cyano)(amino)alkylidene [Fe2Cp2(CO)2(μ-CO){μ-C(CN)N(Me)(CH2CHCH2)}], 2, in 91% yield. Decarbonylation of 2 by using Me3NO in acetone at room temperature yielded [Fe2Cp2(CO)(μ-CO){μ-κ3C-C(CN)N(Me)(CH2CHCH2)}], 3, containing a multidentate alkylidene-alkene ligand occupying both a bridging site and a terminal site, in admixture with the μ-(amino)alkylidyne cyanide product [Fe2Cp2(CN)(CO)(μ-CO){μ-CN(Me)(CH2CHCH2)}], 4. The reaction of the μ-(amino)alkylidyne imine complex [Fe2Cp2(CO)(μ-CO)(NHCPh2){μ-CN(Me)(CH2CHCH2)}]CF3SO3, [7]CF3SO3, with NBu4CN gave 3 with an optimized yield of 75% via imine elimination. According to DFT calculations, 3 is less stable than its geometric isomer 4 by 13.4 kcal mol-1 and quantitative conversion to 4 was achieved by refluxing a THF solution of 3 for 2 hours. No replacement of alkene coordination occurred upon treating 3 with CO or PPh3. The previously unknown compounds 2, 3, 4 and [7]CF3SO3 were fully characterized by analytical and spectroscopic techniques and the structure of 3 was elucidated by single crystal X-ray diffraction.
2022
Bresciani, G.; Schoch, S.; Biancalana, L.; Zacchini, S.; Bortoluzzi, M.; Pampaloni, G.; Marchetti, F.
File in questo prodotto:
File Dimensione Formato  
Revised manuscript_FM2.pdf

accesso aperto

Descrizione: Bozza finale post referaggio
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 629.54 kB
Formato Adobe PDF
629.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1140690
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact