Understanding the spreading of the operator space entanglement entropy (OSEE) is key in order to explore out-of-equilibrium quantum many-body systems. Here we argue that for integrable models the dynamics of the OSEE is related to the diffusion of the operator front. We derive the logarithmic bound 1/2ln(t) for the OSEE of some simple, i.e., low-rank, diagonal local operators. We numerically check that the bound is saturated in the rule 54 chain, which is representative of interacting integrable systems. Remarkably, the same bound is saturated in the spin-1/2 Heisenberg XXZ chain. Away from the isotropic point and from the free-fermion point, the OSEE grows as 1/2ln(t), irrespective of the chain anisotropy, suggesting universality. Finally, we discuss the effect of integrability breaking. We show that strong finite-time effects are present, which prevent us from probing the asymptotic behavior of the OSEE.

Diffusion and operator entanglement spreading

Alba V.
2021-01-01

Abstract

Understanding the spreading of the operator space entanglement entropy (OSEE) is key in order to explore out-of-equilibrium quantum many-body systems. Here we argue that for integrable models the dynamics of the OSEE is related to the diffusion of the operator front. We derive the logarithmic bound 1/2ln(t) for the OSEE of some simple, i.e., low-rank, diagonal local operators. We numerically check that the bound is saturated in the rule 54 chain, which is representative of interacting integrable systems. Remarkably, the same bound is saturated in the spin-1/2 Heisenberg XXZ chain. Away from the isotropic point and from the free-fermion point, the OSEE grows as 1/2ln(t), irrespective of the chain anisotropy, suggesting universality. Finally, we discuss the effect of integrability breaking. We show that strong finite-time effects are present, which prevent us from probing the asymptotic behavior of the OSEE.
2021
Alba, V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1142273
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact