We investigate the finite-size scaling of the lowest entanglement gap $delta\xi$ in the ordered phase of the two-dimensional quantum spherical model (QSM). The entanglement gap decays as $delta\xi=Omega/sqrt{Lln(L)}$. This is in contrast with the purely logarithmic behaviour as $delta\xi=pi^2/ln(L)$ at the critical point. The faster decay in the ordered phase reflects the presence of magnetic order. We analytically determine the constant $Omega$, which depends on the low-energy part of the model dispersion and on the geometry of the bipartition. In particular, we are able to compute the corner contribution to $Omega$, at least for the case of a square corner.

Entanglement gap, corners, and symmetry breaking

Vincenzo Alba
2020

Abstract

We investigate the finite-size scaling of the lowest entanglement gap $delta\xi$ in the ordered phase of the two-dimensional quantum spherical model (QSM). The entanglement gap decays as $delta\xi=Omega/sqrt{Lln(L)}$. This is in contrast with the purely logarithmic behaviour as $delta\xi=pi^2/ln(L)$ at the critical point. The faster decay in the ordered phase reflects the presence of magnetic order. We analytically determine the constant $Omega$, which depends on the low-energy part of the model dispersion and on the geometry of the bipartition. In particular, we are able to compute the corner contribution to $Omega$, at least for the case of a square corner.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/1142434
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact