Methods Results Discussion References Abbreviations Copyright Abstract Background: Italy has experienced severe consequences (ie, hospitalizations and deaths) during the COVID-19 pandemic. Online decision support systems (DSS) and self-triage applications have been used in several settings to supplement health authority recommendations to prevent and manage COVID-19. A digital Italian health tech startup, Paginemediche, developed a noncommercial, online DSS with a chat user interface to assist individuals in Italy manage their potential exposure to COVID-19 and interpret their symptoms since early in the pandemic. Objective: This study aimed to compare the trend in online DSS sessions with that of COVID-19 cases reported by the national health surveillance system in Italy, from February 2020 to March 2021. Methods: We compared the number of sessions by users with a COVID-19–positive contact and users with COVID-19–compatible symptoms with the number of cases reported by the national surveillance system. To calculate the distance between the time series, we used the dynamic time warping algorithm. We applied Symbolic Aggregate approXimation (SAX) encoding to the time series in 1-week periods. We calculated the Hamming distance between the SAX strings. We shifted time series of online DSS sessions 1 week ahead. We measured the improvement in Hamming distance to verify the hypothesis that online DSS sessions anticipate the trends in cases reported to the official surveillance system. Results: We analyzed 75,557 sessions in the online DSS; 65,207 were sessions by symptomatic users, while 19,062 were by contacts of individuals with COVID-19. The highest number of online DSS sessions was recorded early in the pandemic. Second and third peaks were observed in October 2020 and March 2021, respectively, preceding the surge in notified COVID-19 cases by approximately 1 week. The distance between sessions by users with COVID-19 contacts and reported cases calculated by dynamic time warping was 61.23; the distance between sessions by symptomatic users was 93.72. The time series of users with a COVID-19 contact was more consistent with the trend in confirmed cases. With the 1-week shift, the Hamming distance between the time series of sessions by users with a COVID-19 contact and reported cases improved from 0.49 to 0.46. We repeated the analysis, restricting the time window to between July 2020 and December 2020. The corresponding Hamming distance was 0.16 before and improved to 0.08 after the time shift. Conclusions: Temporal trends in the number of online COVID-19 DSS sessions may precede the trend in reported COVID-19 cases through traditional surveillance. The trends in sessions by users with a contact with COVID-19 may better predict reported cases of COVID-19 than sessions by symptomatic users. Data from online DSS may represent a useful supplement to traditional surveillance and support the identification of early warning signals in the COVID-19 pandemic.
Digital surveillance through an online decision support tool for COVID-19 over one year of the pandemic in Italy: Observational study
Rizzo C
2021-01-01
Abstract
Methods Results Discussion References Abbreviations Copyright Abstract Background: Italy has experienced severe consequences (ie, hospitalizations and deaths) during the COVID-19 pandemic. Online decision support systems (DSS) and self-triage applications have been used in several settings to supplement health authority recommendations to prevent and manage COVID-19. A digital Italian health tech startup, Paginemediche, developed a noncommercial, online DSS with a chat user interface to assist individuals in Italy manage their potential exposure to COVID-19 and interpret their symptoms since early in the pandemic. Objective: This study aimed to compare the trend in online DSS sessions with that of COVID-19 cases reported by the national health surveillance system in Italy, from February 2020 to March 2021. Methods: We compared the number of sessions by users with a COVID-19–positive contact and users with COVID-19–compatible symptoms with the number of cases reported by the national surveillance system. To calculate the distance between the time series, we used the dynamic time warping algorithm. We applied Symbolic Aggregate approXimation (SAX) encoding to the time series in 1-week periods. We calculated the Hamming distance between the SAX strings. We shifted time series of online DSS sessions 1 week ahead. We measured the improvement in Hamming distance to verify the hypothesis that online DSS sessions anticipate the trends in cases reported to the official surveillance system. Results: We analyzed 75,557 sessions in the online DSS; 65,207 were sessions by symptomatic users, while 19,062 were by contacts of individuals with COVID-19. The highest number of online DSS sessions was recorded early in the pandemic. Second and third peaks were observed in October 2020 and March 2021, respectively, preceding the surge in notified COVID-19 cases by approximately 1 week. The distance between sessions by users with COVID-19 contacts and reported cases calculated by dynamic time warping was 61.23; the distance between sessions by symptomatic users was 93.72. The time series of users with a COVID-19 contact was more consistent with the trend in confirmed cases. With the 1-week shift, the Hamming distance between the time series of sessions by users with a COVID-19 contact and reported cases improved from 0.49 to 0.46. We repeated the analysis, restricting the time window to between July 2020 and December 2020. The corresponding Hamming distance was 0.16 before and improved to 0.08 after the time shift. Conclusions: Temporal trends in the number of online COVID-19 DSS sessions may precede the trend in reported COVID-19 cases through traditional surveillance. The trends in sessions by users with a contact with COVID-19 may better predict reported cases of COVID-19 than sessions by symptomatic users. Data from online DSS may represent a useful supplement to traditional surveillance and support the identification of early warning signals in the COVID-19 pandemic.File | Dimensione | Formato | |
---|---|---|---|
Digital Surveillance Through an Online Decision Support Tool for COVID-19 Over One Year of the Pandemic in Italy- Observational Study.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
531.42 kB
Formato
Adobe PDF
|
531.42 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.