We analyse the 2-dimensional Euler point vortices dynamics in the Koopman-Von Neumann approach. Classical results provide well-posedness of this dynamics involving singular interactions for a finite number of vortices, on a full-measure set with respect to the volume measure dxN on the phase space, which is preserved by the measurable flow thanks to the Hamiltonian nature of the system. We identify a core for the generator of the one-parameter group of Koopman-Von Neumann unitaries on L2(dxN) associated to said flow, the core being made of observables smooth outside a suitable set on which singularities can occur.

Essential self-adjointness of Liouville operator for 2D Euler point vortices

GROTTO F
2020-01-01

Abstract

We analyse the 2-dimensional Euler point vortices dynamics in the Koopman-Von Neumann approach. Classical results provide well-posedness of this dynamics involving singular interactions for a finite number of vortices, on a full-measure set with respect to the volume measure dxN on the phase space, which is preserved by the measurable flow thanks to the Hamiltonian nature of the system. We identify a core for the generator of the one-parameter group of Koopman-Von Neumann unitaries on L2(dxN) associated to said flow, the core being made of observables smooth outside a suitable set on which singularities can occur.
2020
Grotto, F
File in questo prodotto:
File Dimensione Formato  
Liouville JFA.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 458.86 kB
Formato Adobe PDF
458.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
JFA___Essential_Self_Adjointness_PV_Liouville_Operator.pdf

accesso aperto

Descrizione: Postprint
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 384.17 kB
Formato Adobe PDF
384.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1143808
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact