We develop a semianalytical approach, based on the post-Newtonian expansion and on the affine approximation, to model the tidal deformation of neutron stars in the coalescence of black hole-neutron star or neutron star-neutron star binaries. Our equations describe, in a unified framework, both the system orbital evolution, and the neutron star deformations. These are driven by the tidal tensor, which we expand at 1/c(3) post-Newtonian order, including spin terms. We test the theoretical framework by simulating black hole-neutron star coalescence up to the onset of mass shedding, which we determine by comparing the shape of the star with the Roche lobe. We validate our approach by comparing our results with those of fully relativistic, numerical simulations.

Tidal interaction in compact binaries: A post-Newtonian affine framework

GUALTIERI, Leonardo;
2012

Abstract

We develop a semianalytical approach, based on the post-Newtonian expansion and on the affine approximation, to model the tidal deformation of neutron stars in the coalescence of black hole-neutron star or neutron star-neutron star binaries. Our equations describe, in a unified framework, both the system orbital evolution, and the neutron star deformations. These are driven by the tidal tensor, which we expand at 1/c(3) post-Newtonian order, including spin terms. We test the theoretical framework by simulating black hole-neutron star coalescence up to the onset of mass shedding, which we determine by comparing the shape of the star with the Roche lobe. We validate our approach by comparing our results with those of fully relativistic, numerical simulations.
Ferrari, Valeria; Gualtieri, Leonardo; Maselli, Andrea
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/1148285
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 25
social impact