GW170817, the milestone gravitational-wave event originated from a binary neutron star merger, has allowed scientific community to place a constraint on the equation of state of neutron stars by extracting the leading-order, tidal-deformability term from the gravitational waveform. Here we incorporate tidal corrections to the gravitational-wave phase at next-to-leading and next-to-next-to-leading order, including the magnetic tidal Love numbers, tail effects, and the spin-tidal couplings recently computed in Tiziano Abdelsalhin [Phys. Rev. D 98, 104046 (2018)]. These effects have not yet been included in the waveform approximants for the analysis of GW170817. We provide a qualitative and quantitative analysis of the impact of these new terms by studying the parameter bias induced on events compatible with GW170817 assuming second-generation (advanced LIGO) and third-generation (Einstein Telescope) ground-based gravitational-wave interferometers. We find that including the tidal-tail term deteriorates the convergence properties of the post-Newtonian expansion in the relevant frequency range. We also find that the effect of magnetic tidal Love numbers could be measurable for an optimal GW170817 event with signal-to-noise ratio ≈1750 detected with the Einstein Telescope. On the same line, spin-tidal couplings may be relevant if mildly high-spin χ0.1 neutron star binaries exist in nature.

Impact of high-order tidal terms on binary neutron-star waveforms

Gualtieri, Leonardo
2018

Abstract

GW170817, the milestone gravitational-wave event originated from a binary neutron star merger, has allowed scientific community to place a constraint on the equation of state of neutron stars by extracting the leading-order, tidal-deformability term from the gravitational waveform. Here we incorporate tidal corrections to the gravitational-wave phase at next-to-leading and next-to-next-to-leading order, including the magnetic tidal Love numbers, tail effects, and the spin-tidal couplings recently computed in Tiziano Abdelsalhin [Phys. Rev. D 98, 104046 (2018)]. These effects have not yet been included in the waveform approximants for the analysis of GW170817. We provide a qualitative and quantitative analysis of the impact of these new terms by studying the parameter bias induced on events compatible with GW170817 assuming second-generation (advanced LIGO) and third-generation (Einstein Telescope) ground-based gravitational-wave interferometers. We find that including the tidal-tail term deteriorates the convergence properties of the post-Newtonian expansion in the relevant frequency range. We also find that the effect of magnetic tidal Love numbers could be measurable for an optimal GW170817 event with signal-to-noise ratio ≈1750 detected with the Einstein Telescope. On the same line, spin-tidal couplings may be relevant if mildly high-spin χ0.1 neutron star binaries exist in nature.
Jiménez Forteza, Xisco; Abdelsalhin, Tiziano; Pani, Paolo; Gualtieri, Leonardo
File in questo prodotto:
File Dimensione Formato  
Impact of high-order tidal terms.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/1148306
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact