We consider a one-dimensional McKean--Vlasov SDE on a domain and the associated mean-field interacting particle system. The peculiarity of this system is the combination of the interaction, which keeps the average position prescribed, and the reflection at the boundaries; these two factors make the effect of reflection nonlocal. We show pathwise well-posedness for the McKean--Vlasov SDE and convergence for the particle system in the limit of large particle number.

A McKean--Vlasov SDE and Particle System with Interaction from Reflecting Boundaries

Maurelli, Mario
2022-01-01

Abstract

We consider a one-dimensional McKean--Vlasov SDE on a domain and the associated mean-field interacting particle system. The peculiarity of this system is the combination of the interaction, which keeps the average position prescribed, and the reflection at the boundaries; these two factors make the effect of reflection nonlocal. We show pathwise well-posedness for the McKean--Vlasov SDE and convergence for the particle system in the limit of large particle number.
2022
Coghi, Michele; Dreyer, Wolfgang; Friz, Peter K.; Gajewski, Paul; Guhlke, Clemens; Maurelli, Mario
File in questo prodotto:
File Dimensione Formato  
McKean-Vlasov SDE.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 635.9 kB
Formato Adobe PDF
635.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1149879
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact