We study a mean field approximation for the 2D Euler vorticity equation driven by a transport noise. We prove that the Euler equations can be approximated by interacting point vortices driven by a regularized Biot-Savart kernel and the same common noise. The approximation happens by sending the number of particles N to infinity and the regularization in the Biot-Savart kernel to 0, as a suitable function of N.

Regularized vortex approximation for 2D Euler equations with transport noise

Maurelli M.
2020

Abstract

We study a mean field approximation for the 2D Euler vorticity equation driven by a transport noise. We prove that the Euler equations can be approximated by interacting point vortices driven by a regularized Biot-Savart kernel and the same common noise. The approximation happens by sending the number of particles N to infinity and the regularization in the Biot-Savart kernel to 0, as a suitable function of N.
Coghi, M.; Maurelli, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1149884
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact