We study a mean field approximation for the 2D Euler vorticity equation driven by a transport noise. We prove that the Euler equations can be approximated by interacting point vortices driven by a regularized Biot-Savart kernel and the same common noise. The approximation happens by sending the number of particles N to infinity and the regularization in the Biot-Savart kernel to 0, as a suitable function of N.
Regularized vortex approximation for 2D Euler equations with transport noise
Maurelli M.
2020-01-01
Abstract
We study a mean field approximation for the 2D Euler vorticity equation driven by a transport noise. We prove that the Euler equations can be approximated by interacting point vortices driven by a regularized Biot-Savart kernel and the same common noise. The approximation happens by sending the number of particles N to infinity and the regularization in the Biot-Savart kernel to 0, as a suitable function of N.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CogMau2020.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
421.63 kB
Formato
Adobe PDF
|
421.63 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Coghi_Maurelli_vortex_stoch_Euler.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
370.41 kB
Formato
Adobe PDF
|
370.41 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.