We study a mean field approximation for the 2D Euler vorticity equation driven by a transport noise. We prove that the Euler equations can be approximated by interacting point vortices driven by a regularized Biot-Savart kernel and the same common noise. The approximation happens by sending the number of particles N to infinity and the regularization in the Biot-Savart kernel to 0, as a suitable function of N.

Regularized vortex approximation for 2D Euler equations with transport noise

Maurelli M.
2020-01-01

Abstract

We study a mean field approximation for the 2D Euler vorticity equation driven by a transport noise. We prove that the Euler equations can be approximated by interacting point vortices driven by a regularized Biot-Savart kernel and the same common noise. The approximation happens by sending the number of particles N to infinity and the regularization in the Biot-Savart kernel to 0, as a suitable function of N.
2020
Coghi, M.; Maurelli, M.
File in questo prodotto:
File Dimensione Formato  
CogMau2020.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 421.63 kB
Formato Adobe PDF
421.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Coghi_Maurelli_vortex_stoch_Euler.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 370.41 kB
Formato Adobe PDF
370.41 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1149884
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact