Polyvinyl butyral (PVB) is an amorphous polymer employed in many technological applications. In order to highlight the relationships between macroscopic properties and dynamics at a microscopic level, motions of the main-chain and of the propyl side-chains were investigated between Tg − 288◦ C and Tg + 55◦ C, with Tg indicating the glass transition temperature. To this aim, a combination of solid state Nuclear Magnetic Resonance (NMR) methods was applied to two purposely synthesized PVB isotopomers: one fully protonated and the other perdeuterated on the side-chains.1 H time domain NMR and1 H field cycling NMR relaxometry experiments, performed across and above Tg, revealed that the dynamics of the main-chain corresponds to the α-relaxation associated to the glass transition, which was previously characterized by dielectric spectroscopy. A faster secondary relaxation was observed for the first time and ascribed to side-chains. The geometry and rate of motions of the different groups in the side-chains were characterized below Tg by2 H NMR spectroscopy.
Unravelling main- and side-chain motions in polymers with NMR spectroscopy and relaxometry: The case of polyvinyl butyral
Mandoli A.Membro del Collaboration Group
;
2021-01-01
Abstract
Polyvinyl butyral (PVB) is an amorphous polymer employed in many technological applications. In order to highlight the relationships between macroscopic properties and dynamics at a microscopic level, motions of the main-chain and of the propyl side-chains were investigated between Tg − 288◦ C and Tg + 55◦ C, with Tg indicating the glass transition temperature. To this aim, a combination of solid state Nuclear Magnetic Resonance (NMR) methods was applied to two purposely synthesized PVB isotopomers: one fully protonated and the other perdeuterated on the side-chains.1 H time domain NMR and1 H field cycling NMR relaxometry experiments, performed across and above Tg, revealed that the dynamics of the main-chain corresponds to the α-relaxation associated to the glass transition, which was previously characterized by dielectric spectroscopy. A faster secondary relaxation was observed for the first time and ascribed to side-chains. The geometry and rate of motions of the different groups in the side-chains were characterized below Tg by2 H NMR spectroscopy.File | Dimensione | Formato | |
---|---|---|---|
2021_polymers-13-02686-v2.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
2.47 MB
Formato
Adobe PDF
|
2.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.